7 research outputs found

    Worldline quantization of field theory, effective actions and L ∞ structure

    Get PDF
    Abstract We formulate the worldline quantization (a.k.a. deformation quantization) of a massive fermion model coupled to external higher spin sources. We use the relations obtained in this way to show that its regularized effective action is endowed with an L ∞ symmetry. The same result holds also for a massive scalar model

    One-loop effective actions and higher spins

    Get PDF
    The idea we advocate in this paper is that the one-loop effective action of a free (massive) field theory coupled to external sources (via conserved currents) contains complete information about the classical dynamics of such sources. We show many explicit examples of this fact for (scalar and fermion) free field theories in various dimensions d = 3,4,5,6 coupled to (bosonic, completely symmetric) sources with a number of spins. In some cases we also provide compact formulas for any dimension. This paper is devoted to two-point correlators, so the one-loop effective action we construct contains only the quadratic terms and the relevant equations of motion for the sources we obtain are the linearized ones

    One-loop effective actions and higher spins. Part II

    Get PDF
    In this paper we continue and improve the analysis of the effective actions obtained by integrating out a scalar and a fermion field coupled to external symmetric sources, started in the previous paper. The first subject we study is the geometrization of the results obtained there, that is we express them in terms of covariant Jacobi tensors. The second subject concerns the treatment of tadpoles and seagull terms in order to implement off-shell covariance in the initial model. The last and by far largest part of the paper is a repository of results concerning all two point correlators (including mixed ones) of symmetric currents of any spin up to 5 and in any dimensions between 3 and 6. In the massless case we also provide formulas for any spin in any dimension

    HS in flat spacetime: the effective action method

    No full text
    Abstract This is the first paper in a series of three dealing with HS theories in flat spacetime. It is divided in three parts. The first part is an elaboration on the method of effective action, initiated in a previous paper. We study the properties of correlators of currents in the free fermion coupled to external higher spin (HS) potentials, and develop techniques for their explicit calculation. In particular we show how they can be calculated via ordinary Feynman diagram techniques. We also introduce the concept of curved LL_\infty L∞ algebra and show how it can be realized in the context of the fermion model. In part II we compare the results of the scalar model and those of the fermion model (coupled to HS fields). We show that the HS field formulation coming from the scalar model is the ‘square’ of the one ensuing from the fermion model. Finally, in part III, we analyse the possible obstructions that one may meet in constructing the effective action: these are the analogues of anomalies in ordinary gauge theories. We provide explicit and compact formulas of the latter

    Pontryagin trace anomaly

    No full text
    We review the recent results on the Pontryagin trace anomaly in QFT's with free Weyl fermion in curved four-dimensional spacetime

    Pontryagin trace anomaly

    No full text
    We review the recent results on the Pontryagin trace anomaly in QFT's with free Weyl fermion in curved four-dimensional spacetime
    corecore