6,927 research outputs found

    On the basic equations for the second-order modeling of compressible turbulence

    Get PDF
    Equations for the mean and turbulent quantities for compressible turbulent flows are derived. Both the conventional Reynolds average and the mass-weighted, Favre average were employed to decompose the flow variable into a mean and a turbulent quality. These equations are to be used later in developing second order Reynolds stress models for high speed compressible flows. A few recent advances in modeling some of the terms in the equations due to compressibility effects are also summarized

    On the Basic Equations for the Second-order Modeling of Compressible Turbulence

    Get PDF
    Equations for the mean and the turbulence quantities of compressible turbulent flows are derived in this report. Both the conventional Reynolds average and the mass-weighted Favre average were employed to decompose the flow variable into mean and turbulent quantities. These equations are to be used later in developing second-order Reynolds stress models for high-speed compressible flows. A few recent advances in modeling some of the terms in the equation due to compressibility effects are also summarized

    Characteristic Length Scale of Electric Transport Properties of Genomes

    Full text link
    A tight-binding model together with a novel statistical method are used to investigate the relation between the sequence-dependent electric transport properties and the sequences of protein-coding regions of complete genomes. A correlation parameter Ω\Omega is defined to analyze the relation. For some particular propagation length wmaxw_{max}, the transport behaviors of the coding and non-coding sequences are very different and the correlation reaches its maximal value Ωmax\Omega_{max}. wmaxw_{max} and \omax are characteristic values for each species. The possible reason of the difference between the features of transport properties in the coding and non-coding regions is the mechanism of DNA damage repair processes together with the natural selection.Comment: 4 pages, 4 figure

    Effect of lubricant environment on saw damage in silicon wafers

    Get PDF
    The chemomechanical effect of lubricant environments on the inner diameter (ID) sawing induced surface damage in Si wafers was tested for four different lubricants: water, dielectric oil, and two commercial cutting solutions. The effects of applying different potential on Si crystals during the sawing were also tested. It is indicated that the number and depth of surface damage are sensitive to the chemical nature of the saw lubricant. It is determined that the lubricants that are good catalysts for breaking Si bonds can dampen the out of plane blade vibration more effectively and produce less surface damage. Correlations between the applied potential and the depth of damage in the dielectric oil and one of the commercial cutting solutions and possible mechanisms involved are discussed

    Fast divide-and-conquer algorithms for preemptive scheduling problems with controllable processing times – A polymatroid optimization approach

    Get PDF
    We consider a variety of preemptive scheduling problems with controllable processing times on a single machine and on identical/uniform parallel machines, where the objective is to minimize the total compression cost. In this paper, we propose fast divide-and-conquer algorithms for these scheduling problems. Our approach is based on the observation that each scheduling problem we discuss can be formulated as a polymatroid optimization problem. We develop a novel divide-and-conquer technique for the polymatroid optimization problem and then apply it to each scheduling problem. We show that each scheduling problem can be solved in O(Tfeas(n) log n) time by using our divide-and-conquer technique, where n is the number of jobs and Tfeas(n) denotes the time complexity of the corresponding feasible scheduling problem with n jobs. This approach yields faster algorithms for most of the scheduling problems discussed in this paper

    d-Wave Pairing Correlation in the Two-Dimensional t-J Model

    Full text link
    The pair-pair correlation function of the two-dimensional t-J model is studied by using the power-Lanczos method and an assumption of monotonic behavior. In comparison with the results of the ideal Fermi gas, we conclude that the 2D t-J model does not have long range d-wave superconducting correlation in the interesting parameter range of J/t0.5J/t \leq 0.5. Implications of this result will also be discussed.Comment: 4 pages, 6 figures, accepted by PR

    Kinetic Inductance of Josephson Junction Arrays: Dynamic and Equilibrium Calculations

    Full text link
    We show analytically that the inverse kinetic inductance L1L^{-1} of an overdamped junction array at low frequencies is proportional to the admittance of an inhomogeneous equivalent impedance network. The ijthij^{th} bond in this equivalent network has an inverse inductance Jijcos(θi0θj0Aij)J_{ij}\cos(\theta_i^0-\theta_j^0-A_{ij}), where JijJ_{ij} is the Josephson coupling energy of the ijthij^{th} bond, θi0\theta_i^0 is the ground-state phase of the grain ii, and AijA_{ij} is the usual magnetic phase factor. We use this theorem to calculate L1L^{-1} for square arrays as large as 180×180180\times 180. The calculated L1L^{-1} is in very good agreement with the low-temperature limit of the helicity modulus γ\gamma calculated by conventional equilibrium Monte Carlo techniques. However, the finite temperature structure of γ\gamma, as a function of magnetic field, is \underline{sharper} than the zero-temperature L1L^{-1}, which shows surprisingly weak structure. In triangular arrays, the equilibrium calculation of γ\gamma yields a series of peaks at frustrations f=12(11/N)f = \frac{1}{2}(1-1/N), where NN is an integer 2\geq 2, consistent with experiment.Comment: 14 pages + 6 postscript figures, 3.0 REVTe

    A multiple-scale turbulence model for incompressible flow

    Get PDF
    A multiple-scale eddy viscosity model is described. This model splits the energy spectrum into a high wave number regime and a low wave number regime. Dividing the energy spectrum into multiple regimes simplistically emulates the cascade of energy through the turbulence spectrum. The constraints on the model coefficients are determined by examining decaying turbulence and homogeneous turbulence. A direct link between the partitioned energies and the energy transfer process is established through the coefficients. This new model was calibrated and tested for boundary-free turbulent shear flows. Calculations of mean and turbulent properties show good agreement with experimental data for two mixing layers, a plane jet and a round jet

    Time-bin entangled photon holes

    Full text link
    The general concept of entangled photon holes is based on a correlated absence of photon pairs in an otherwise constant optical background. Here we consider the specialized case when this background is confined to two well-defined time bins, which allows the formation of time-bin entangled photon holes. We show that when the typical coherent state background is replaced by a true single-photon (Fock state) background, the basic time-bin entangled photon-hole state becomes equivalent to one of the time-bin entangled photon-pair states. We experimentally demonstrate these ideas using a parametric down-conversion photon-pair source, linear optics, and post-selection to violate a Bell inequality with time-bin entangled photon holes.Comment: 6 pages, 5 figure
    corecore