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On the Basic Equations for the Second-Order Modeling of
Compressible Turbulence

W.W. Liou and T.-H. Shih
Institute for Computational Mechanics in Propulsion
and Center for Modeling of Turbulence and Transition

Lewis Research Center
Cleveland, Ohio 44135

Abstract

Equations for the mean and the turbulent quantities for compressible turbulent
flows are derived in this report. Both the conventional Reynolds average and the
mass-weighted, Favre average were employed to decompose the flow variable into a
mean and a turbulent quantity. These equations are to be used later in developing
second-order Reynolds stress models for high-speed compressible flows. A few recent
advances in modeling some of the terms in the equations due to compressibility
effects are also summarized.



1. Introduction

This report describes the progress that was made during the first phase of an
effort to develop new second-order closure models for compressible turbulence.

Compressible turbulence modeling is an essential element of many problems
of practical interest, such as external aerodynamic calculations, the design of en-
gine components and noise reduction. Initially, based on Morkovin’s hypothesis
(1964), the direct extension of incompressible models were used in the calculation
of turbulent flows at moderate Mach numbers. This practice has enjoyed a con-
siderable success in the calculations of wall shear layers in the past. However, it
failed to predict adequately the reduced growth rate of high speed shear layers, in
which the compressibility cffects are more prominent. As a result, assuming that
the turbulent fluctuations undergo thermodynamic processes such as isentropic or
isothermal processes, Oh (1974), Rubesin (1976) and Vandromme (1983), among
others, added compressibility corrections to the baseline incompressible models and
produced mixed levels of success.

However, with the recent interest and need to develop high-speed flight tech-
nologies, models that predict correctly the dynamics of complex compressible turbu-
lent flows are needed to measure up to the advances in other areas such as CFD and
aerothermodynamics. To this end, the present task explores second-order models
with an explicit account of compressibility effects. With this in mind, we first derive
the equations for the mean flow and turbulent quantities within the framework of
second-order modeling by using two basic approaches, i.e., the Reynolds average and
the Favre average. These equations and some related matters that were observed
along the way are described in this report. Two rccently proposed arguments about
the influence of compressibility are also described. These include the concept of
dilatation dissipation and the description of the changes of turbulence structures by
flow instabilities. It is concluded that the instability wave description of turbulent
large structures complements the second-order modeling methods and, together,
the two approaches may be able to satisfy a broad range of needs in engineering
calculations involving compressible turbulent flows.

2. Basic Compressible Equations

The equations that govern the flows of compressible fluids are the Navier-Stokes
equations. The equations are
Equation of conservation of mass

pet+(pui)i=0 (1)
Equations of conservation of momentum
(puide + (puiuz); = 0455 (2)



Equation of conservation of energy: in total energy

(PE)e + (pBuwi)i = (0iju3)i — i (3)
or
(pH)e + (pHwi)i = pu + (mijuj)i — gi; (4)
Equation of state
p=pRT (5)
where
1 p 1
E=c+zuu; , H=ee+=4+=zuu; , ¢e=0C,T
2 p 2
oij = —Ppbi; + T, T o= 2psy— prugpbiy, s = 5 iy +us),
.2
BY= gl btk o & = -kT;

With the expressions for the transport coefficients {x , u* , k} obtained experi-
mentally, the above equations form a closed system with appropriate boundary and
initial conditions. Note that according to the second law of thermodynamics, the
transport coeflicients have to be greater than zero.

3. Equations for Compressible Turbulent Flows

Statistically, the random fluctuation of flow properties in turbulent flows can
be decomposed into an average value and a fluctuation. Two commonly used aver-
aging techniques are the conventional and mass-weighted averages, which are often
referred to as the Reynolds average and the Favre average, respectively. In the
Reymnolds average, the flow property, ¢, is decomposed into a ensemble mean value,
¢, and a fluctuation, ¢", i.e.,

C, =Co+C!' , C, =T, +C" (6)



A Favre-averaged or mass-weighted-averaged mean value, ¢ is defined as

¢ = (7)

>3]

A mixed average that uses the Reynolds average for the density, pressure, transport
coeflicients and specific heats and Favre average for the other quantities is often ap-
plied in dealing with compressible turbulence. Flow properties can then be written

as

p=7+ p"
u; = U; + u;
p=7p+p
T =T+ T
E=E+ E
H=H+ H
uo= ﬁ+,u"' copt =
C, =C, +C/ , Cp=Cp+ CV -~ (8)
Note that both decompositions are defined in term of the ensemble average and
W =0 , W #£0 (9)
Wi =0 , ul #0 (10)

This is one of the most important differences between the Reynolds and the Favre
averages. The relations between these two averages are

F-F=¢-¢=F=-7F/7=-7F/7 )

3.1 Mean Flow Equations
3.1.1 Reynolds-averaged Equations

The Reynolds-averaged mean equation for the conservation of mass can be
obtained by taking the Reynolds average of the instantaneous equation of the con-
servation of mass. The mean equations for the conservation of momentum and
energy can be obtained by the same procedure.

Mean Continuity
Pet P+ P = 0 (12)



Mean Momentum

PUis + (p”u") + (7 u]+pllu1!) T, + (pu" "—I—/)” . "+u]p”u")J

= =P+ s+ p™"uy )8 + 2Esi; + 1))} (13)
Mean Energy

pE+p"E" 1+ + pEu,+pE"u”+u,p"E”+E " "—i—p”E"u'-' ;
pu i ),

k. H

={ —(@+Pu +p"u! + U T + 1 up ul + wpr” ukk+ukk,u

+ W) + 2 (B 55545 + Esfu i+ u;p" sy + Sijp"ui 4+ p''ufs i) e (14)

or

(PH+Pp"H"—9), + (pHu; +pH"u" +uipH" + H p'ul 4 p" H'ul) ;

{ - (qx kuz+/l uk ku”—}—u“u ukk+uk ki ,,u”+#*llu2,ku,’)
+ 204 5,75 + 1 “3'1 it uJu”s + 5:]/‘"“” + us ;’] J) }i (15)
where .
E=CGT+ T + 3 (@i + uful)
and
H = C_T + CHTN - (u T, +ull u)

Equation of State
= pRT + Rp"T" (16)

These mean equations may be used to solve for the mean quantities:
{—P-,'C—[i,-ﬁ,—f} (17)

The set of mean flow equations, however, are not closed. Quantitics that need to
be known to solve these equations are

", "o ot 1 ®7 0

1, 1 ""
pui’uuj’puu‘]’/"’uk’#‘

npn ", 1 neph, i ", 1
;]1pE7EuispEui3puia

1" i/ x/ " xft .t PUBNT] n . n "I . it mn, . n
Uk gty » H U7 PT U 4 ukku v UiSi; o KUSi; s BTU; o, pTUGS

p"T" ’ C{)'T" 3 F y B Cv (18)



3.1.2 Favre-averaged Equations

The equations governing the Favre-averaged mean variables can be obtained
by the same process that was used to derive the Reynolds-averaged mean equations.
Since p¢' = 0, the density fluctuation does not appear explicitly in the resulting
equations. The equations are listed below.

Mean Continuity
Py + (Pui); = 0 (19)
Mean Momentum .
(Pui); + (Pt + puluy),; =

{=(P+ u™ ek + p*"uf  + 070} 65 + 2F55 + s +E S (20)
Mean Energy
(PE)« + (PEU:+pE'ul); = {—(qi +Pil; + pul + p'u]

T~ ~ _ ! ] b 11 ! b H 113 ——- T T v e
R ALY DR ) W T A W ST N Gl H S T AT ARE ST ARV kT HF Uk pul)

+ 2 (835 + Asijuf + W] + Sy + puls]; + Sy + WS} (21)
] J J

or
(PH ~P), + (pHu; + pH'Y!) ;

. — —_— o .1 7 o~ "oy -~ "o "oy
= {— (qi-|—,u*uk’ku,+,u*uk,kui+u,u* Ui k + Ugk 25 U+ p* g ukk+u Uu; uk k)

+ 2(7SiU5 + Esjjul + Uipt sl + Sipu) + pulsh; + B s + ESGut) b (22)

where

~ ~ 1 ~ . —
E = CT+CT + ~(TCT7p" + TT'T") + % (Wi + ')
P

and

-

H=CT+C'T + TC"p”+C” "T + = (u;u; +u uj
p P

Equation of State _
p = pRT (23)

These equations may be used to solve for the mean quantities:
{?aﬁisﬁaf} (24)

Not surprisingly, the set of mean flow equations are not closed. Quantities that
need to be known to solve these equations are

———

1,1 T "l ! 'y o
u,.uj,uukk,,usij,sij,E,, P



T 7 7 7 7 T o7 7
Pruy o Up Uy 5 BT Up g oy KT Up oy SjUy o, pUUG NUSUa

CLITf , C,','p" , C{,’p"T' , F s B, Cv (25)

It was shown in this section that, in order to solve the mean flow equations,
the turbulent moments of order up to three must somehow be modeled. The main
objective of this study is to develop rational second-order modeling procedures
for compressible turbulence. The transport equations for the second-order tur-
bulent moments are derived in the following sections. Higher order moments are
represented as functionals of the mean flow and the second-order moments in the
second-order models that will be developed later in the second phase of this project.

3.2 Equations for Turbulent Fluctuations
3.2.1 Reynolds-averaged Equations

The equations for the turbulent fluctuations are needed in the derivation of the
equations for moments of various order. The fluctuating parts of the equations of
conservation of mass, momentum and energy were obtained by subtracting the mean
equations from their corresponding instantaneous equations. The same procedure
is also applicable to the equation of state and the thermodynamic relations.
Fluctuating Continuity

o+ (Pui + "+ o — p"ul) i = 0 (26)

Fluctuating Momentum

(P"uf = p"ul + "+ pu),e + {P(ufuf — ulu]) + T(p"u] — p"ul)
+ T5(p"w — p"ul) + p"uu] — P + 7 Tl + 5 Tl + w0}

= {—(0" + 0"l — T T+ e T )6
+ 2 (u"siy — p"sf; + fsly + 4355} (27)
Fluctuating Energy
(PE" + Ep" +p"B" ~ 7TE") + {p(E"w} - B]) + w(s"E" - 7E7)
) 4Bl B 4 pE 5T+ 5
= { = [ &' +Pui +p"Ti + p"uf —p"ul + % (uf pulf — ] pul ) +T(u* uf — " ull )
+ (™ ] — ) el — Ul g+ T e + 0 T ]

+ 2 [A(sijuf — s¥ull) + w(u"sfy — w"sT) + 5i;(p" ) — pul)



+pu sl — pulsT sy 4 ESGu 4 550} (28)
or
GH" + T+ "B~ 57, + ("~ ) + " H — 57TT)
+ Hp"ui' = p"u) + p"H"u} — p"H'u] + pw;H" + pHu] + T Hp"}
= { =P} + @ +u(ug gl —uf uf) + (e u - 7 uf k
+ Tl — ) 4 uz,ku:', - W+ R g + U puf + A7

n.n T "on T nonon

[ (Suu] _sz]u])'i'u.?(:u Sz] H 3:])+311(” u —pHu; )+H Uy 3]

.

— pufsl + B;s; + Ay 4,550} (29)
Fluctuating Equation of State
pll — R (-ﬁTM +pIIT+pHTH _W) (30)

Fluctuating Thermodynamic Relations

E" = C'T+C,T" +C'T" - C'T" +7; u 4 (u" "W (31)

B' = T +CoT" + CyT" ~ TPT + Wl + S (ulul — W) (32)

3.2.2 Favre-averaged Equations
Fluctuating Continuity

Py + {p"U + (PHp" N} =0 (33)
Fluctuating Momentum
{puitp"(@itud}e + {0 Tl +(p+p" Yl — Bufu + (54 " Yiisusy + (5 0" uldl;} 5
= {=[p" + s upp — 1+ B g — Ul )+ 1 Tk k)6
+ 2 [u"si; — p"si; + B(sl; — L) + 1"S50) (34)
Fluctuation Energy

{P"E+(p+p")E'} ¢ + {p" Eti+(p+0") E'vi—pE ul + (p+ 0" VLE +(p+ " uiE)

= {=[Fluj — ul) +p"T; + p"uf — pul + B (uf pul — ul pul) + Ti(p uh o — Ul )



b ;= ) g~ T G — )+ k(1 — )
+uwﬁﬁkd+-[M&ﬂg~s”%)+UKM” = H1S5) o S (" — ) + )

;u—s” + u “J( SU) + l“u( ’J) + ﬂjgij/‘”]},i (35)
Fluctuating Equation of State

P = Rp"T+(5+ ")) (36)

Fluctuating Thermodynamic

E' = C/T+C,T'+C'T' T — L (FCT7 4+ CTor ) 4 itsul 4 - (u wl—wlal) (37)
I

H = C;,'f-}-C_pT'-i-C;,'T'—_—CI’,'T'—%(TVCI','p"+CI','P"T’)+?7:’U:+%(Uiu;—'m) (38)

3.3 Turbulent Moment Equations

3.3.1 Reynolds-averaged Equations

Since ¢" = 0, the first-order moments of all the Reynolds-averaged
turbulence fluctuations are zero. Equations for the second-order moments:

puiul, pE"u!, p"u! and turbulent kinetic energy, %, are derived below.

Sty 1
pu; u'!

An equation for the total momentum exchanges, pu;u; can be derived by multi-
plying the momentum equations in u; by u;, exchanging the indices and adding the
resulting equations together. An equation for 5 T;u; can be obtained in a similar
way.

(7 5Ty 0+ T+ T (07T, + (F o)+ (T, 770 ) o T (P e

+ u](pu u” ) _I_EJ(Hmpllu;,l),m +U:’(EmP"u") + s (pll H Il ) m + u](P" II ™

x0T

= =U;P; —U;p; — Ui(p* Upx + p*" uf k) = Ui(pt T+ p "uf k)
+ 2 u:(u‘s]m + :UHS ) m+2 u](.uszm + /4"3 (39)

An equation for p u !, the turbulent Reynolds stresses, may be obtained by sub-
tracting the equatlon for p u;u; from the one for pu;u;. The resulting equation
is



Ho Izt

.
+ P+ Ul

", n I H H)

(Pui'uj + p"u

+ ul m(pull " +umpllull+pll II H)+u1’m(pu" " +umpll ll+pfl H H

+ (p umuﬂ " +pu" "ull _|_ u pllullull +p"ullullum m

"..n "o

= —uypli —uwpl; —uf (e p + u Tk + e Ul )

*II " )

s —
- uz'(/,L*u'k',k +pt Uk g+ opt uy k

+ 2 {un(us +/i"3:m +/J'"3 m + un(us +H-”31m +/“'"3 ’m} (40)

The continuity equation and the following relations have been used in the process
a(bc)m + b(ac)m = (abc)m + bacn, (41)

a (bed)ym + b(acd),m = (abed)m + ba(cd)m (42)
k
An equation for the turbulent kinetic energy % can be obtained by lettmg 1=7

in the equation for pu" uj.

(pk + pllk) ¢ + p"u”u, ,

+ (P + Tyl 4 Py 4 (P TR+ T 4 PR

—_ .

U Py — uﬁ’(,u_*uk + u* g+ p¥ ukk i

+ 2 Wl(ash, + A5 + S (43)

o
I

An equation for p"u can be derived by manipulating the equations for uj and
p". An equation for p” can be obtained from the continuity equation. It is

P+ uiply + uip; + puf; + pus; = 0 (44)

An equation for u] can be obtained from the momentum equations. Note that

" "2

~ L _ P -
P 52+0((ﬁ3))
(45)

—~~
—
[
i~
+
—
]
~—
™
+
~—
|

1,1
1+ & p

10



This linearized form for % is used here to simplify the equation. With this simplifi-
cation, the equation for u! becomes

" _— 1 H—
U; ¢ + uju; ; + UGG

{=(0" + Fug i + 0" Ta + p" g )85 + 2Bl + p's5 + p"'s))

-

"

- %7{ —F 4" + Tk + 1 T+ T+ 7 )6
+ 2(7 555 + p' SU + 1 Nsu + '“"S:’J)}’j (46)

The equation for pu p"u!’ can be obtained by multiplying the equation for p"” by u/
and the equation for u] by p” and summing up the two. The resulting equation is

T+ T () 5 + P 4 T + (), + W+ P

"
T %{(P" g W+ g )6

-2 ( + H"SU +“N 1" )} .

"
_(%)2{(ﬁ+P"+Fﬁk,k+Fu o T+ g )6

1
+ 2 (B s+ sl + 47555+ 47sT) 1y + 0((%)3) (47)

The linear approximation was used in Shih et al. (1987) in modeling a variable-
density mixing layer and may be applicable in the modeling of compressible turbu-
lence as well.

S R, 1
pE"y

One form of the transport equation for ,EW can be obtained by tracking
the following steps: (1) Derive the pEu; equation by multiplying the momentum
equations by E and the energy equation by u; and summing up the two resulting
equations (2) Derive the pF #; equations by the same procedure (3) Subtract the
pE u; equation from the pFu; equation. The resulting equations are

(PE"u] + p"E"ul), + p"ul E, + p"E'u;,

+ ( p u . F g, N + pE"u"u;’ + U p"E" 1 + p"E”u" " )’]_

+ (pulf " _I_u pllu” +u p’lull +p”u”ulf ) E

11



+ ( EW'I‘HJ'P"E" 1+ p”E"u'j’ ) T

*'f,

= — E"(p" +pu* Up x + 0 Tk + p U k)i

1, 1!

— wu(p" + Eu'k,k + Uk + puy k3

— — — T 1
= wu{(P+p" + p Uk + e uf 0 T a5

I

— "— 7T,
= Uyud (P + pFug o + Tk + Ul

uju (B4 p" + u Uk + pFup e T+ Ul )

1", I H

+ 2 [uf (Sijui + sl + Fsiju; +/t"suu + IS+ p s+ pttal'sl)

+ B (B + p"5i5 + 1)) — aj jul | (48)

3.3.2 Favre-averaged Equations

In order to close the Favre-averaged mean equations, the quantity u has to be
known. An equatlon for u] can be obtained by taking the Reynolds average of the
equation for u The Favre-averaged mean momentum equations can be written as,
by using the Favre—averaged mean continuity equation,

~ ~ . 1 L — 7 — .
(i) + ujdi; = 5 {=(P+ p*Unk + " uf p + 1¥uf ()i

—r—

+ 2(@8y + WSl + B s;) — pulu} (49)

An equation for u} can be obtained by iubtracting this equation from the total
momentum equations. The equation for u} becomes

T, Y B ol 1.1
Wi + ujuli; + uliu; + LFCIN

1 - —_—e _— 1~ 1"
N ;{_(p P U+ R 0 Uk + 7 ug )65 )

2 ~
+ ;(#Sij +Esy + s+ psiy), g

1 —_ —~ [ oy — o
= 5{—(P+/A*Uk,k+u* Uik HBuL )8+ 2(8855 + p's) + sl — ulul} ; (50)

Since, .
R (51)

an equation for u can be converted to an equation for the mass flux p''ul.

12



Similarly, an equation for E can be obtained from the mean continuity, mean
energy and the total energy equations. The resulting equation is

Ey+ GE; + vE; + o

1 p— _— T~ = 114
= _;{‘Jj +qi +(P+ "+ prUkg + ptug g+ g )65

+

‘bll\ﬁ

1 ——
(B3i; +Esi; + u”sz +u"si;) 5+ 3 {@ + (pu; + pu! + p"u!

—_— _
T Mg R U kY + g G ptug ol

1~ 1 ~ "
o g+ p e 8 e g )b

-2 (ﬁ'gijﬁ,' -}-ﬁ’é}ju; +'[[s:-jﬁ,- +7 z] ul + ;L"S,Ju + H"S g + pllst 7 ul

— pE'u}} (52)

Note that, unlike u_:, E’ does not appear explicitly in the Favre-averaged mean
energy equation. However, this equation can be converted easily to an equation for
p"E" which appears in the Reynolds-averaged mean equations.

The equations for the Favre-averaged second-order moments can be obtained
through the same process used in the derivation of the corresponding Reynolds-a
averaged second-order moments. Therefore, only the final form of the equations
will be given.

=l a,!
pu;uU;

m

(5“1"3% + (pumu,u] + pu: _] Um)m + p(u ujm+u mUi,m)

= —[B+p")ufls — [(B+p"uil; + 25+ p")si;

I —_— 2~ "oy
= i g g + R+ Uk e g )

| N . ! 1o~ "ot
— ui(p*ug g + prug g+ e g+ opt Ug k),

+ 2 {uj(BSim + B + 1"Sim + 1"810),m

+ wi (B8 jm + 1SS + 1" Sm + 18} ) m } (53)

k), + (7 sk); + puldli;; + (pu'k);
= —[(B+p")w]i + (B+p" i,

13



At d g 1)~ "
— wi(p e,k + pFug g+ p Uk + e )

+ 2 wi(ps,; + msi; + p'si + u'sl) (54)

(PE'ul)e + (P GE'W, + pEuly ut)j + pU’u’E ~ pE’u s

= — E{(p+p" + p Uk i + uFul b T A W k)65

+ 2(psi; + 1 ﬂs;; + u''si; + u's; )}

= P+ P+ BTkt Bl e T )

— Uui(p +p" + pF Uk + pFup g Uk + Uk k)5

— i ul(P+ P+ uF Uk + Ul g+ kg + p k)

— wul(P+p" + p Uk g+ prup g+ Uk + g k),

+ 2 ui(BSij s + PSijuf + Isi;i + fsijul + pSiU + psiul + sl + pts]ul)
u' (55)

— Gt 4G5
Equations for the third-order moments can be similarly derived, if need arises, and
may provide some insights into the physical mechanisms involved. In the mean
time, however, we derive moment equations only up to the second order.

3.4 Simplified Equations

Equations for the mean flow and the second-order moments in Reynolds or
Favre decompositions derived above are rather complicated compared to their in-
compressible counterparts. These equations can be greatly simplified by assuming
that the correlations of the transport coefficient fluctuations, 4" and g*", and ther-
modynamic coefficients, Cy and Cy, with other turbulent fluctuations are negligible.

That is,

v P

The resulting simplified equations for the mean flow and turbulence moments are
given below. '

3.4.1 Reynolds-averaged Equations

The Reynolds-averaged mean flow equations, the turbulent kinetic energy equa-
tion and the Reynolds-stress equations become

14



Mean Continuity

P+ FTAPE; = 0 (57)
Mean Momentum
(B Wit + P"ul) + (7 Tl + Tpu] + pull] + prulall + o0 ul) 5
= {~pé&i; + Tij}; (58)
Mean EnerEy
(5E+W),t + (ﬁEﬁz pE”u"+u p"E"+Ep" "—i—p"E”u;')’,-
= {~(@+P@w+p"ul) + 7i; T + U}, (59)
where 1
E=0C,T+ 5 (Tw; + ul'ull),
and
Tij = 2@ 3 — prUkkbiy, T o= 2@ s — pF uy by
Equation of State
P = pRT + Rp"T" (60)
pulu’!
(pu"u")t + (p umu”u”)m—i—(p"u"u")t + p”u Ui + p"u Ujy
=Pl + 1l + IOE + & (61)
where
Ps- —{ (pu ull + Upp' u" + p”u 'l Y Ui m
+ (pu?u’r’n + Ump"ul + p”u"u")u,m}
Tﬁm = —{ pulu Huu + Tmp"ulu H + p"ulu "u” T p”u"&.m + p”u”&m
- T::nu] - iju1
HS_ - 2p" T
f = T - T

15



[

(Pk)e + (BUk),; + (0"k)e + pul Wiy = PR + TF, + II? 1+ & (62)

where

R _ ¢ _ /lrl__—‘nu_nuu —- .
P® = (- pulu ujpul pluiuy ) U ;

TF = — (pufk + wp"k + Pk + p'ulé; — Thul

R T
" = plug

R __ w.on
€ = TU'LLI,J

The mean flow is described by the following quantities :
{ﬁ ¥ ) ﬁ 3 T}

Quantities that need to be known to solve these equations are

i, 1 i ", n BN "o 0t /" "o 1,1
pluy  wjui o pluiui . p"E" . E'ul | p"E"u! | p'ul!

" [ TR T alll F T
uk’kui 3 ’U,JSU ’ pT I S L Cv

3.4.2 Favre-averaged Equations

The simplified equations for Favre-averaged quantities are

Mean Continuity

pe + (Pui); =0
Mean Momentum

(pu:),e + (puii; +pu ),J = {-p&; + T + Tl]}]
Mean Energy

(PE)« + (PEG: + pB'w}), |
= {~(@ + P + pul + P"U’) + TlJuJ + 7l U+ TlJu + mu5 b

where

—

~=C’_,,T+

N~

and
-~ -~ — / ; —
Tij = 2WSi; — p* Uk bij, Tij = 28y — p*ug g ij
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(65)

(66)

(67)



Equation of State

r——

(Puiuj)e + (Plmuiu})m

(68)

=P + Tipmm + IE + f — 5 ul - Pt + Timmls + Timmu, (69)

2

where
Pl = — 5 (wulyiljm + wulyiim )
Tg'm = —{ﬁu:m;n + Wéim + p"ulbim — TimUj — Timti
e = 2577
eiFJ' = - Ti'mufi,m - T;mu:,m
k

Pk): + (Pisk),; = PY + T, + IF + & — pal + 7;,ul

?

where
F - .1~
T = — {pu'k +p"u — 7Lu!
J J J ij %
F _ T
II" =p u;
F __ _ 77 T
€ Tii%i j
Since,
¢ll¢l — ¢’,¢"

o, = I and I = Of

(70)

(11)
(71)

l.e. the pressure-strain terms in the Reynolds and Favre averages are identical.
Moreover, if the viscous stress tensors are expressed in the form of Reynolds-
averaged rates of deformation tensors, the following expressions can be derived

el = e and f = R
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These equations may be used to solve for the mean quantities:

{E ) a’i ) Z_) ) T} (73)
The unknowns are
11 to ! ma
wuy , By, o,
pPlu; o wpaup , siul o, pt, E, G (74)

4. Some Observations

The equations governing the mean motions of compressible turbulent flows
have been derived. The mean motions were defined in two ways. Firstly, the mean
is taken as the ensemble-averaged mean of instantaneous quantities. The mean
motions are thus described by the mean density, velocity, temperature, etc. This
is also called Reynolds average or Reynolds decomposition. The second averaging
method, Favre-averaging, is a mass-weighted average. The mean flow is described
by the mass-weighted quantities. Regardless of the decomposition that was used,
quite a few correlations or moments of turbulent fluctuations have to be known to
close the equations governing the mean flow.

Due to the nonlinear terms in the Navier-Stokes equations, such as the con-
vective terms in the momentum equations and the surface-force work terms in the
energy equation, an equation for an n'*-order moment always contains correlations
of order higher than n. All these terms in the turbulent moment equations have to
be modeled so that the mean flow and the turbulence equations form a closed system
with appropriate boundary and/or initial conditions. Second-order modeling efforts
involve solutions of the mean flow and the second order correlations that appear
in the mean equations through rational modeling techniques. In the following, the
equations for compressible turbulent flows obtained by using the Reynolds average
and the Favre average will be examined.

It should be noted that the form of the Reynolds-averaged turbulent mean flow
equations is not the same as that of the compressible Navier-Stokes equations. The
equations for the turbulent mean flow contain additional turbulent correlations due
to the turbulent density fluctuation such as p"¢" and p"u¢" and the turbulent
fluctuation of transport coeflicients such as p*"uf , and p*” ST, As was mentioned
earlier, the correlations of the fluctuating transport coefficients may be negligible
in most problems. This, however, is not necessarily the case for the correlations
of the density fluctuation. Density fluctuation terms such as p"u” and p"E"u” in
the Reynolds-averaged mean equations may be important and have to be modeled,
Varma et al. (1974). Since these moments of density fluctuation do not appear in
the equations for incompressible turbulence, there are no incompressible baseline
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models that modeling of these terms can be built upon. Therefore, the Reynolds-
averaged equations are seldom used in the calculations of compressible turbulent
flows.

Two procedures that can be used to obtain transport equations for the density
correlation terms were proposed in the previous sections. These equations may be
used to develop modeled transport equations for these moments of density fluctu-
ation. Note that the average turbulent mass flux p"u” are different from the mass
flux fluctuation, (pu;)", since

(pui)" = pui + p'a; + p'u — p"u] (75)

On the other hand, Favre averaging eliminates moments of the density fluc-
tuation and the resulting equations bear much more resemblance to those in in-
compressible flows. This is attributable to the use of mass-weighted quantities : ¢,
since

pp' = 0 where ¢ = ¢ — & (11)

In light of this analogy and Morkovin’s hypothesis that the turbulence structure is
unaffected by compressibility as long as the fluctuation Mach number is much less
than unity, there was common optimism for the extension of incompressible models
to high Mach number flows. This practice has enjoyed a considerable success in
the calculations of wall shear layers in the past. The success, however, was not
shared by the predictions of high speed free shear layers, even when the conditions
satisfied Morkovin’s hypothesis. The extension would also fail in the presence of
shock waves and expansion fans where the dilatation is large. One prominent fea-
ture that extension models fail to predict is the reduction of the growth rate of
compressible free mixing layers as the Mach number increases. Oh (1974) consid-
ered the pressure dilatation terms in the turbulent kinetic energy equation. These
terms were modeled using an eddy shock wave hypothesis. Oh argued that the
convecting turbulence structures in free shear flows provide the key mechanism to
produce pressure-dilatation and predicted the reduced growth rate of high speed
mixing layers.

The Favre-averaged mean equations can be reduced to a form similar to that
of the Navier-Stokes equations in Favre-averaged mean quantities. With an eddy-
viscosity type of model, an operational compressible Navier-Stokes solver can then
be extended to include “turbulence” by simply (1) neglecting u”, Z}cy—kands—;; and (2)
replacing the molecular viscosity by an equivalent turbulent eddy viscosity without
modifying the main structure of the codes. This is generally the case in the imple-
mentation of eddy-viscosity turbulence models to existing CFD codes. It should be
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remembered, however, that the solutions thus obtained are mass-averaged quanti-
ties, rather than ensemble-averaged ones, since

~ _ _ rrd
¢ — ¢ =¢ = - — (11)
17
o I,
ﬁu;u3 — Ppuiul = plufull — el S s > P Y (76)

The differences between Reynolds- and Favre-averaged turbulent quantities may be
less than 10% for low supersonic flows. Nevertheless, it may not be negligible for
flows of higher speed, say for M >> 5. Therefore, it is essential to be consistent not
only in the equations that are used but also in the comparison of results. For in-
stance, Favre-averaged turbulence equations must be used with the Favre-averaged
mean equations and the solutions be converted to Reynolds-averaged quantities to
compare with ensemble averaged experimental data.

Note that ¢’ # 0 and the Favre-decomposition looses its advantage over the
Reynolds-decomposition in cases in which density does not appear, for instance,
the surface force terms in the mean momentum and energy equations. There are
a variety of ways to handle these moments. Rubesin (1990), Vandromme et al.
(1983), Speziale et al. (1991) , among others, simply neglected _S:_J and m terms
in the mean momentum equations. That is,

Tij = 285 — 1T kb (77)

Sarkar and Balakrishnan (1990), instead, use Reynolds decomposed velocity in the
constitutive relation

Tij = 2;—1?,']' — '[Fﬁk’k&,-]- (78)

In this case, a model is needed to convert Favre-decomposed velocity to Reynolds-
decomposed velocity, since

104,01
p Uy

F;

(79)

Uy — u; = —

The surface force terms in the mean energy equation can be similarly simplified.

Rubesin (1990) argued that the Sij» Ui and u} terms in the equation can sim-
ply be omitted as in the mean momentum equations. Sarkar and Balakrishnan
(1990) used Reynolds-decomposition in all the surface-force work terms. Speziale
and Sarkar (1991) used Reynolds-averaged velocity in the shear stress and Favre-

averaged quantities otherwise. All but Rubesin’s (1990) proposals used a model for
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u!. Sarkar and Balakrishnan (1990) and Speziale and Sarkar (1990) used a gradient

transport expansions, i.e.,
— plui
u; = = 7 ~ P (80)

A more refined analysis can be found in Taulbee (1991), in which a modeled trans-
port equation was used for the mass flux, u—i

Note that there has been a lack of consensus in the identification of the com-
pressibility effects on turbulence, quite aside from the modeling of compressible
turbulent flows. For example, Nichols (1990) and Grasso and Speziale (1989) calcu-
lated separated flows and considered the effects of compressibility in the turbulent
kinetic energy equation. They chose completely different terms in the equation
to represent the dominant effects of compressibility. Nichols (1990) argued that
the “turbulent velocity-density dissipation” terms, QEiW S, are the most sig-
nificant terms; Grasso and Speziale (1989), on the other hand, proposed that the

pressure-dilatation terms, p” Z—Z’;, and the product of the pressure-gradient and mass
fluctuations, L’;}i 5%, play a strong role in high speed flows with adversc pressure
gradients and could not be disregarded. Both Grasso and Speziale (1989) and
Nichols (1990) used a 1D isentropic approximation to model the relations between
the density and velocity fluctuations. Nichols (1990) applied his model to a vari-
ety of flows, which included a supersonic compression ramp flow similar to that in
Grasso and Speziale (1989). For the compressible ramp flow, both models obtained
some degree of sucess in the prediction of the skin friction coefficients and it is

difficult to identify the dominant compressibility effects.

5. Recent Advances

Recently a rather new concept called dilatational dissipation was proposed by
Sarkar et al. (1990) and Zeman (1990). For upux = 0 and p = constant, the
dissipation rate

pe = T, (51)
can be represented by
T X o
pe = p(wiw] + 3 (ug)?) = €& + € (82)

where w; is the vorticity vector and €, and e, denote the solenoidal and the dilata-
tional part of the turbulent dissipation. The newly identified dilatational dissipation
term accounts for the viscous dissipation of turbulent kinetic energy due to volume
fluctuations. Both Sarkar et al. (1990) and Zeman (1990) argued that the solenoidal
part of the dissipation assumed its standard form as in incompressible cases and
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that the dilatational dissipation was proportional to the square of the Mach number.
Zeman’s (1990) analysis was based on the existence of turbulent eddy shocklets in
high speed mixing layers. On the other hand, Sarkar et al. (1990) used an asymp-
totic analysis. Model predictions from both work were very encouraging in the
prediction of the reduced growth rates of compressible mixing layers as a function
of the convective Mach number. Dilatational dissipation appears to be among the
direct consequency of compressibility effects and has to be properly accounted for
in modeling compressible turbulence.

Sarkar et al. (1990) indicated that e, is rather insensitive to the change of
compressible indicators in moderate Mach number turbulence and modeled e, using
a traditional incompressible form. For other cases such as for flows of f higher Mach
number a refined model may be needed. An equation of €, (= ﬁw”w” ) can be
obtained by subtracting the equation for @,; from the @w; equation. The resulting
equation is

= . _ (o . _ T

€t + Ujes,; = —(ufe,) ; €suf ; 2p wiw('ul
AN ENTY i u T "ﬁT
—Zuuwwu—l—?uw]w +2uwwu,,—2esu“+‘)‘uw 7

+4,u{r T"Sk + S" T,] + ry T"S'"

"0t

b T~ =2 = STLA T
f (2 =) ek~ rk,(gz),j Thpp — r-;:,-<§;),jr,:;,,p} (83)
where
rei = 5 (ukj — ujk)

and S denotes entropy. The approximation (45) was also invoked. The equation
suggests that the dynam1cs of €, in compressible turbulence may be very different
from that of the turbulent dissipation rate in incompressible turbulence. The equa-
tion also indicates that in compressible turbulence, the effects of the thermodynamlc
states of the flow system may be important to the evolution of e,.

Another school of though on compressibility effects focuses on the changes of
turbulence structures at high Mach numbers. It was proposed that turbulent ener-
getics evolve with preferred modes of perturbations as the Mach number, or com-
pressibility effects, increases. These energetic turbulent structures were interpreted
as physical manifestation of evolving instability. The selective amplifying effects of
compressibility were mentioned in Sandham and Reynolds (1987), Ragab and Wu
(1989), Lele (1989) and Morkovin (1990). Due to the communicability problem be-
tween interacting elements in supersonic flows, structures that are highly efficient in
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extracting energy from the mean flow at low Mach numbers no longer prevail as the
Mach number increases. They are replaced by structures associated with the modes
generated by compressibility effects. Therefore, the quasi-2D vortical structures in
low speed mixing layers may be more susceptible to the communicability problem
than the highly 3D structures in bounded shear flows. Linear stability analysis
also shows that for even higher M., the amplified modes travel supersonically and
obliquely and thus may generate only limited mixing. Morris et al (1990) applied
linear analysis and predicted quantitatively the reduced growth of supersonic free
mixing layers without any adjustment of operating conditions. Liou (1990) devel-
oped three closure models to predict the evolution of incompressible mixing layers
at the large scale using a weakley nonlinear theory. The models predicted the mean
flow field as well as the unsteady large-scale turbulent motions. This approach
is rather unique and appears to be very promising in predicting the unsteadiness
of turbulent structures. Note that a reasonable modeling of the unsteadiness and
spatial intermittence of turbulent structures is essential in many areas that are re-
lated to high speed turbulent flow calculations. These include, for example, the
predictions of high speed jet noise and chemically reacting flows. Therefore, this
approach appears to be complementary rather than contradictory to the traditional
second-order modeling techniques.

6. Initiative to Develop New Second-Order Compressible Models

To develop second-order models for compressible turbulence, a reasonable first
step is probably to distinguish compressibility terms from incompressible back-
ground. This is what Zeman (1990) and Sarkar et al. (1990) have performed.
The dilatation dissipation they identified appears to be an important mechanism in
compressible turbulence. A successful development of a compressible second-order
model may inevitably invoke techniques and methodologies that were proved useful
in the modeling of incompressible turbulence. The techniques and methodologies,
however, have to be tuned in to the experimental observations and the theoreti-
cal constrains of compressible turbulence. For example, one of the consequences
of compressibility effects is the finite speed of the propagation of information. In
supersonic flows, modulation of flow properties occurs only within Mach cones of
influenice with acoustic time delay. This feature introduces additional scales that
may have to be included in the modeling of compressible flows.

It can also be observed from the turbulent equations that there will be ex-
changes between the turbulent kinetic energy and thermoenergy through rather
different routes than in incompressible flows, In compressible turbulent flows of
high fluctuating Mach numbers, eddy shocklets may begin to appear. Lumley in-
dicated (private communication) that once the eddy shocklets appear in any sig-
nificant numbers, a quite different approach, “... one which centers on entropy
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fluctuations, and which concentrates on the rather large changes that take place in
the shocklets...” is needed. Corresponding terms in the equations may need to be
identified and properly modeled. These unique features, among others, may have to
be considered explicitly in the development of new compressible turbulence models.

Compressible turbulence modeling is still in its infancy. This seems to be true
both theoretically and computationally. Therefore, it is prudent to have a open
mind in the pursuit of rational, accurate and physically sound models.
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