28,279 research outputs found
Hadron widths in mixed-phase matter
We derive classically an expression for a hadron width in a two-phase region
of hadron gas and quark-gluon plasma (QGP). The presence of QGP gives hadrons
larger widths than they would have in a pure hadron gas. We find that the
width observed in a central Au+Au collision at
GeV/nucleon is a few MeV greater than the width in a pure hadron gas. The part
of observed hadron widths due to QGP is approximately proportional to
.Comment: 8 pages, latex, no figures, KSUCNR-002-9
Symmetry of boundary conditions of the Dirac equation for electrons in carbon nanotubes.
We consider the effective mass model of spinless electrons in single wall carbon nanotubes that is equivalent to the Dirac equation for massless fermions. Within this framework we derive all possible energy independent hard wall boundary conditions that are applicable to metallic tubes. The boundary conditions are classified in terms of their symmetry properties and we demonstrate that the use of different boundary conditions will result in varying degrees of valley degeneracy breaking of the single particle energy spectrum
Far Ultraviolet Observations of the Dwarf Nova VW Hyi in Quiescence
We present a 904-1183 A spectrum of the dwarf nova VW Hydri taken with the
Far Ultraviolet Spectroscopic Explorer during quiescence, eleven days after a
normal outburst, when the underlying white dwarf accreter is clearly exposed in
the far ultraviolet. However, model fitting show that a uniform temperature
white dwarf does not reproduce the overall spectrum, especially at the shortest
wavelengths. A better approximation to the spectrum is obtained with a model
consisting of a white dwarf and a rapidly rotating ``accretion belt''. The
white dwarf component accounts for 83% of the total flux, has a temperature of
23,000K, a v sin i = 400 km/s, and a low carbon abundance. The best-fit
accretion belt component accounts for 17% of the total flux, has a temperature
of about 48,000-50,000K, and a rotation rate Vrot sin i around 3,000-4,000
km/s. The requirement of two components in the modeling of the spectrum of VW
Hyi in quiescence helps to resolve some of the differences in interpretation of
ultraviolet spectra of VW Hyi in quiescence. However, the physical existence of
a second component (and its exact nature) in VW Hyi itself is still relatively
uncertain, given the lack of better models for spectra of the inner disk in a
quiescent dwarf nova.Comment: 6 figures, 10 printed page in the journal, to appear in APJ, 1 Sept.
2004 issue, vol. 61
The Universal Cut Function and Type II Metrics
In analogy with classical electromagnetic theory, where one determines the
total charge and both electric and magnetic multipole moments of a source from
certain surface integrals of the asymptotic (or far) fields, it has been known
for many years - from the work of Hermann Bondi - that energy and momentum of
gravitational sources could be determined by similar integrals of the
asymptotic Weyl tensor. Recently we observed that there were certain overlooked
structures, {defined at future null infinity,} that allowed one to determine
(or define) further properties of both electromagnetic and gravitating sources.
These structures, families of {complex} `slices' or `cuts' of Penrose's null
infinity, are referred to as Universal Cut Functions, (UCF). In particular, one
can define from these structures a (complex) center of mass (and center of
charge) and its equations of motion - with rather surprising consequences. It
appears as if these asymptotic structures contain in their imaginary part, a
well defined total spin-angular momentum of the source. We apply these ideas to
the type II algebraically special metrics, both twisting and twist-free.Comment: 32 page
The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer
The external electric field deforms flaccid phospholipid vesicles into
spheroidal bodies, with the rotational axis aligned with its direction.
Deformation is frequency dependent: in the low frequency range (~ 1 kHz), the
deformation is typically prolate, while increasing the frequency to the 10 kHz
range changes the deformation to oblate. We attempt to explain this behaviour
with a theoretical model, based on the minimization of the total free energy of
the vesicle. The energy terms taken into account include the membrane bending
energy and the energy of the electric field. The latter is calculated from the
electric field via the Maxwell stress tensor, where the membrane is modelled as
anisotropic lossy dielectric. Vesicle deformation in response to varying
frequency is calculated numerically. Using a series expansion, we also derive a
simplified expression for the deformation, which retains the frequency
dependence of the exact expression and may provide a better substitute for the
series expansion used by Winterhalter and Helfrich, which was found to be valid
only in the limit of low frequencies. The model with the anisotropic membrane
permittivity imposes two constraints on the values of material constants:
tangential component of dielectric permittivity tensor of the phospholipid
membrane must exceed its radial component by approximately a factor of 3; and
the membrane conductivity has to be relatively high, approximately one tenth of
the conductivity of the external aqueous medium.Comment: 17 pages, 6 figures; accepted for publication in J. Phys.: Condens.
Matte
Secondary phi meson peak as an indicator of QCD phase transition in ultrarelativistic heavy ion collisions
In a previous paper, we have shown that a double phi peak structure appears
in the dilepton invariant mass spectrum if a first order QCD phase transition
occurs in ultrarelativistic heavy ion collisions. Furthermore, the transition
temperature can be determined from the transverse momentum distribution of the
low mass phi peak. In this work, we extend the study to the case that a smooth
crossover occurs in the quark-gluon plasma to the hadronic matter transition.
We find that the double phi peak structure still exists in the dilepton
spectrum and thus remains a viable signal for the formation of the quark-gluon
plasma in ultrarelativistic heavy ion collisions.Comment: 8 pages, 9 uuencoded postscript figures included, Latex, LBL-3572
New Approach for Measuring at Future -Factories
It is suggested that the measurements of hadronic invariant mass ()
distributons in the inclusive decays can be
useful in extracting the CKM matrix element . We investigated
hadronic invariant mass distributions within the various theoretical models of
HQET, FAC and chiral lagrangian as well as ACCMM model. It is also emphasized
that the distribution even at the region in the inclusive
are effetive in selecting the events, experimentally viable at
the future asymmetric factories, with better theoretical understandings.Comment: 11 pages not including 1 figur
Recommended from our members
Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice.
BackgroundObesity is associated with gut microbiota dysbiosis, disrupted intestinal barrier and chronic inflammation. Given the high and increasing prevalence of obesity worldwide, anti-obesity treatments that are safe, effective and widely available would be beneficial. We examined whether the medicinal mushroom Antrodia cinnamomea may reduce obesity in mice fed with a high-fat diet (HFD).MethodsMale C57BL/6J mice were fed a HFD for 8 weeks to induce obesity and chronic inflammation. The mice were treated with a water extract of A. cinnamomea (WEAC), and body weight, fat accumulation, inflammation markers, insulin sensitivity and the gut microbiota were monitored.ResultsAfter 8 weeks, the mean body weight of HFD-fed mice was 39.8±1.2 g compared with 35.8±1.3 g for the HFD+1% WEAC group, corresponding to a reduction of 4 g or 10% of body weight (P<0.0001). WEAC supplementation reduced fat accumulation and serum triglycerides in a statistically significant manner in HFD-fed mice. WEAC also reversed the effects of HFD on inflammation markers (interleukin-1β, interleukin-6, tumor necrosis factor-α), insulin resistance and adipokine production (leptin and adiponectin). Notably, WEAC increased the expression of intestinal tight junctions (zonula occludens-1 and occludin) and antimicrobial proteins (Reg3g and lysozyme C) in the small intestine, leading to reduced blood endotoxemia. Finally, WEAC modulated the composition of the gut microbiota, reducing the Firmicutes/Bacteroidetes ratio and increasing the level of Akkermansia muciniphila and other bacterial species associated with anti-inflammatory properties.ConclusionsSupplementation with A. cinnamomea produces anti-obesogenic, anti-inflammatory and antidiabetic effects in HFD-fed mice by maintaining intestinal integrity and modulating the gut microbiota
- …
