1,440 research outputs found

    Advanced microwave radiometer antenna system study

    Get PDF
    The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison

    Absolute conservation law for black holes

    Get PDF
    In all 2d theories of gravity a conservation law connects the (space-time dependent) mass aspect function at all times and all radii with an integral of the matter fields. It depends on an arbitrary constant which may be interpreted as determining the initial value together with the initial values for the matter field. We discuss this for spherically reduced Einstein-gravity in a diagonal metric and in a Bondi-Sachs metric using the first order formulation of spherically reduced gravity, which allows easy and direct fixations of any type of gauge. The relation of our conserved quantity to the ADM and Bondi mass is investigated. Further possible applications (ideal fluid, black holes in higher dimensions or AdS spacetimes etc.) are straightforward generalizations.Comment: LaTex, 17 pages, final version, to appear in Phys. Rev.

    Universal conservation law and modified Noether symmetry in 2d models of gravity with matter

    Get PDF
    It is well-known that all 2d models of gravity---including theories with nonvanishing torsion and dilaton theories---can be solved exactly, if matter interactions are absent. An absolutely (in space and time) conserved quantity determines the global classification of all (classical) solutions. For the special case of spherically reduced Einstein gravity it coincides with the mass in the Schwarzschild solution. The corresponding Noether symmetry has been derived previously by P. Widerin and one of the authors (W.K.) for a specific 2d model with nonvanishing torsion. In the present paper this is generalized to all covariant 2d theories, including interactions with matter. The related Noether-like symmetry differs from the usual one. The parameters for the symmetry transformation of the geometric part and those of the matterfields are distinct. The total conservation law (a zero-form current) results from a two stage argument which also involves a consistency condition expressed by the conservation of a one-form matter ``current''. The black hole is treated as a special case.Comment: 3

    The Complete Solution of 2D Superfield Supergravity from graded Poisson-Sigma Models and the Super Pointparticle

    Full text link
    Recently an alternative description of 2d supergravities in terms of graded Poisson-Sigma models (gPSM) has been given. As pointed out previously by the present authors a certain subset of gPSMs can be interpreted as "genuine" supergravity, fulfilling the well-known limits of supergravity, albeit deformed by the dilaton field. In our present paper we show that precisely that class of gPSMs corresponds one-to-one to the known dilaton supergravity superfield theories presented a long time ago by Park and Strominger. Therefore, the unique advantages of the gPSM approach can be exploited for the latter: We are able to provide the first complete classical solution for any such theory. On the other hand, the straightforward superfield formulation of the point particle in a supergravity background can be translated back into the gPSM frame, where "supergeodesics" can be discussed in terms of a minimal set of supergravity field degrees of freedom. Further possible applications like the (almost) trivial quantization are mentioned.Comment: 48 pages, 1 figure. v3: after final version, typos correcte

    Classical and Quantum Integrability of 2D Dilaton Gravities in Euclidean space

    Full text link
    Euclidean dilaton gravity in two dimensions is studied exploiting its representation as a complexified first order gravity model. All local classical solutions are obtained. A global discussion reveals that for a given model only a restricted class of topologies is consistent with the metric and the dilaton. A particular case of string motivated Liouville gravity is studied in detail. Path integral quantisation in generic Euclidean dilaton gravity is performed non-perturbatively by analogy to the Minkowskian case.Comment: 27 p., LaTeX, v2: included new refs. and a footnot

    Area spectrum in Lorentz covariant loop gravity

    Get PDF
    We use the manifestly Lorentz covariant canonical formalism to evaluate eigenvalues of the area operator acting on Wilson lines. To this end we modify the standard definition of the loop states to make it applicable to the present case of non-commutative connections. The area operator is diagonalized by using the usual shift ambiguity in definition of the connection. The eigenvalues are then expressed through quadratic Casimir operators. No dependence on the Immirzi parameter appears.Comment: 12 pages, RevTEX; improved layout, typos corrected, references added; changes in the discussion in sec. IIIB and

    Evolution of magnetism in Yb(Rh_(1-x)Co_x)2Si2

    Full text link
    We present a study of the evolution of magnetism from the quantum critical system YbRh2Si2 to the stable trivalent Yb system YbCo2Si2. Single crystals of Yb(Rh_(1-x)Co_x)2Si2 were grown for 0 < x < 1 and studied by means of magnetic susceptibility, electrical resistivity, and specific heat measurements, as well as photoemission spectroscopy. The results evidence a complex magnetic phase diagram, with a non-monotonic evolution of T_N and two successive transitions for some compositions resulting in two tricritical points. The strong similarity with the phase diagram of YbRh2Si2 under pressure indicates that Co substitution basically corresponds to the application of positive chemical pressure. Analysis of the data proves a strong reduction of the Kondo temperature T_K with increasing Co content, T_K becoming smaller than T_N for x ~ 0.5, implying a strong localization of the 4f electrons. Furthermore, low-temperature susceptibility data confirm a competition between ferromagnetic and antiferromagnetic exchange. The series Yb(Rh_(1-x)Co_x)2Si2 provides an excellent experimental opportunity to gain a deeper understanding of the magnetism at the quantum critical point in the vicinity of YbRh2Si2 where the antiferromagnetic phase disappears (T_N=>0).Comment: 11 pages, 9 figure

    Quantum Averaging I: Poincar\'e--von Zeipel is Rayleigh--Schr\"odinger

    Full text link
    An exact analogue of the method of averaging in classical mechanics is constructed for self--adjoint operators. It is shown to be completely equivalent to the usual Rayleigh--Schr\"odinger perturbation theory but gives the sums over intermediate states in closed form expressions. The anharmonic oscillator and the Henon--Heiles system are treated as examples to illustrate the quantum averaging method.Comment: 12 pages, LaTeX, to appear in Journ. Phys.

    Virtual black hole phenomenology from 2d dilaton theories

    Get PDF
    Equipped with the tools of (spherically reduced) dilaton gravity in first order formulation and with the results for the lowest order S-matrix for s-wave gravitational scattering (P. Fischer, D. Grumiller, W. Kummer, and D. Vassilevich, gr-qc/0105034) new properties of the ensuing cross-section are discussed. We find CPT invariance, despite of the non-local nature of our effective theory and discover pseudo-self-similarity in its kinematic sector. After presenting the Carter-Penrose diagram for the corresponding virtual black hole geometry we encounter distributional contributions to its Ricci-scalar and a vanishing Einstein-Hilbert action for that configuration. Finally, a comparison is done between our (Minkowskian) virtual black hole and Hawking's (Euclidean) virtual black hole bubbles.Comment: 17 pages, 13 figure
    • …
    corecore