134,315 research outputs found

    Numerical invariants of totally imaginary quadratic Z[√p]-orders

    No full text

    Modern CFD applications for the design of a reacting shear layer facility

    Get PDF
    The RPLUS2D code, capable of calculating high speed reacting flows, was adopted to design a compressible shear layer facility. In order to create reacting shear layers at high convective Mach numbers, hot air streams at supersonic speeds, rendered by converging-diverging nozzles, must be provided. A finite rate chemistry model is used to simulate the nozzle flows. Results are compared with one-dimensional solutions at chemical equilibrium. Additionally, a two equation turbulence model with compressibility effects was successfully incorporated with the RPLUS code. The model was applied to simulate a supersonic shear layer. Preliminary results show favorable comparisons with the experimental data

    Hole tunneling times in GaAs/AlAs double-barrier structures

    Get PDF
    We have calculated hole tunneling times in GaAs/AlAs double-barrier structures taking quantum well band-mixing effects into account. Our results indicate that for sufficiently high hole temperatures and concentrations, band-mixing effects reduce average hole tunneling times from the pure heavy hole value to values comparable to electron tunneling times in the same structure. For very low hole temperatures and concentrations, band mixing is less important and average hole tunneling times should approach the pure heavy hole value. These results provide an explanation for previously reported experimental results in which electrons and holes were found to be characterized by very similar tunneling times

    Evaluation of aerothermal modeling computer programs

    Get PDF
    Various computer programs based upon the SIMPLE or SIMPLER algorithm were studied and compared for numerical accuracy, efficiency, and grid dependency. Four two-dimensional and one three-dimensional code originally developed by a number of research groups were considered. In general, the accuracy and computational efficieny of these TEACH type programs were improved by modifying the differencing schemes and their solvers. A brief description of each program is given. Error reduction, spline flux and second upwind differencing programs are covered

    Strong-coupling effects in the relaxation dynamics of ultracold neutral plasmas

    Full text link
    We describe a hybrid molecular dynamics approach for the description of ultracold neutral plasmas, based on an adiabatic treatment of the electron gas and a full molecular dynamics simulation of the ions, which allows us to follow the long-time evolution of the plasma including the effect of the strongly coupled ion motion. The plasma shows a rather complex relaxation behavior, connected with temporal as well as spatial oscillations of the ion temperature. Furthermore, additional laser cooling of the ions during the plasma evolution drastically modifies the expansion dynamics, so that crystallization of the ion component can occur in this nonequilibrium system, leading to lattice-like structures or even long-range order resulting in concentric shells
    • …
    corecore