304 research outputs found

    An Instantaneous Normal Mode Description of Relaxation in Supercooled Liquids

    Get PDF
    Relaxation in supercooled liquids is formulated from the instantaneous normal modes (INM) point of view. The frequency and temperature dependence of the unstable, imaginary frequency lobe of the INM density of states, ⟨ρu(ω,T)⟩ (for simplicity we write ω instead of iω), is investigated and characterized over a broad temperature range, 10⩾T⩾0.42, in the unit density Lennard-Jones liquid. INM theories of diffusion invoke Im-ω modes descriptive of barrier crossing, but not all imaginary frequency modes fall into this category. There exists a cutoff frequency ωc such that modes with ω\u3cωc correspond to “shoulder potentials,” whereas the potential profiles include barrier-crossing double wells for ω\u3eωc. Given that only modes with ω\u3eωc contribute to diffusion, the barrier crossing rate, ωh, and the self diffusion constant D, are shown to be proportional to the density of states evaluated at the cutoff frequency, ⟨ρu(ωc,T)⟩. The density of states exhibits crossover behavior in its temperature dependence such that the exponential T-dependence of D(T) crosses over from Zwanzig–Bassler exp(−E2/T2) behavior at low T to Arrhenius exp(−E/T) behavior at high T; the exponential may be too weak to be observed, in which case D(T) is a power law. Based on the properties of LJ, a general INM description of strong and fragile liquids is presented, with a physical interpretation in terms of the “landscape” of the potential energy surface

    An Instantaneous Normal Mode Description of Relaxation in Supercooled Liquids

    Get PDF
    Relaxation in supercooled liquids is formulated from the instantaneous normal modes (INM) point of view. The frequency and temperature dependence of the unstable, imaginary frequency lobe of the INM density of states, ⟨ρu(ω,T)⟩ (for simplicity we write ω instead of iω), is investigated and characterized over a broad temperature range, 10⩾T⩾0.42, in the unit density Lennard-Jones liquid. INM theories of diffusion invoke Im-ω modes descriptive of barrier crossing, but not all imaginary frequency modes fall into this category. There exists a cutoff frequency ωc such that modes with ω\u3cωc correspond to “shoulder potentials,” whereas the potential profiles include barrier-crossing double wells for ω\u3eωc. Given that only modes with ω\u3eωc contribute to diffusion, the barrier crossing rate, ωh, and the self diffusion constant D, are shown to be proportional to the density of states evaluated at the cutoff frequency, ⟨ρu(ωc,T)⟩. The density of states exhibits crossover behavior in its temperature dependence such that the exponential T-dependence of D(T) crosses over from Zwanzig–Bassler exp(−E2/T2) behavior at low T to Arrhenius exp(−E/T) behavior at high T; the exponential may be too weak to be observed, in which case D(T) is a power law. Based on the properties of LJ, a general INM description of strong and fragile liquids is presented, with a physical interpretation in terms of the “landscape” of the potential energy surface

    Comment on A Critique of the Instantaneous Normal Mode (INM) Approach to Diffusion

    Get PDF
    A critique of the instantaneous normal mode (INM) theory of diffusion by Gezelter, Rabani, and Berne (GRB) [J. Chem. Phys. 107, 4618 (1997)] is analyzed. GRB assert that imaginary-frequency INM are corrupted with modes unrelated to barrier crossing, that proposals for removing such nondiffusive (ND) modes are inadequate, and thus that INM cannot be used to predict the self-diffusion constant, D. In rebuttal it is argued that Lennard-Jones, the system studied by GRB, is anamolously rich in ND modes. INM in molecular liquids are shown to behave as excellent indicators of barrier crossing. Even in LJ ND-INM, while plentiful, do not dominate D except in supercooled liquids near Tg and in the crystal; hence the many successes of the theories already reported in LJ. Agreement of simulated Im-ω densities of states with calculations modeling the INM as excitations in the soft potential model also indicate that the INM reflect the potential energy landscape in liquids

    Entropy, Dynamics and Instantaneous Normal Modes in a Random Energy Model

    Full text link
    It is shown that the fraction f of imaginary frequency instantaneous normal modes (INM) may be defined and calculated in a random energy model(REM) of liquids. The configurational entropy S and the averaged hopping rate among the states R are also obtained and related to f, with the results R~f and S=a+b*ln(f). The proportionality between R and f is the basis of existing INM theories of diffusion, so the REM further confirms their validity. A link to S opens new avenues for introducing INM into dynamical theories. Liquid 'states' are usually defined by assigning a configuration to the minimum to which it will drain, but the REM naturally treats saddle-barriers on the same footing as minima, which may be a better mapping of the continuum of configurations to discrete states. Requirements of a detailed REM description of liquids are discussed

    Mean-atom-trajectory model for the velocity autocorrelation function of monatomic liquids

    Full text link
    We present a model for the motion of an average atom in a liquid or supercooled liquid state and apply it to calculations of the velocity autocorrelation function Z(t)Z(t) and diffusion coefficient DD. The model trajectory consists of oscillations at a distribution of frequencies characteristic of the normal modes of a single potential valley, interspersed with position- and velocity-conserving transits to similar adjacent valleys. The resulting predictions for Z(t)Z(t) and DD agree remarkably well with MD simulations of Na at up to almost three times its melting temperature. Two independent processes in the model relax velocity autocorrelations: (a) dephasing due to the presence of many frequency components, which operates at all temperatures but which produces no diffusion, and (b) the transit process, which increases with increasing temperature and which produces diffusion. Because the model provides a single-atom trajectory in real space and time, including transits, it may be used to calculate all single-atom correlation functions.Comment: LaTeX, 8 figs. This is an updated version of cond-mat/0002057 and cond-mat/0002058 combined Minor changes made to coincide with published versio

    Heat transport in ordered harmonic lattices

    Full text link
    We consider heat conduction across an ordered oscillator chain with harmonic interparticle interactions and also onsite harmonic potentials. The onsite spring constant is the same for all sites excepting the boundary sites. The chain is connected to Ohmic heat reservoirs at different temperatures. We use an approach following from a direct solution of the Langevin equations of motion. This works both in the classical and quantum regimes. In the classical case we obtain an exact formula for the heat current in the limit of system size N to infinity. In special cases this reduces to earlier results obtained by Rieder, Lebowitz and Lieb and by Nakazawa. We also obtain results for the quantum mechanical case where we study the temperature dependence of the heat current. We briefly discuss results in higher dimensions.Comment: 8 pages, 2 figures, published versio

    Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment

    Get PDF
    BACKGROUND: Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. METHODS: We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. RESULTS: Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1) probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. CONCLUSIONS: Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss

    Quantum transport using the Ford-Kac-Mazur formalism

    Get PDF
    The Ford-Kac-Mazur formalism is used to study quantum transport in (1) electronic and (2) harmonic oscillator systems connected to general reservoirs. It is shown that for non-interacting systems the method is easy to implement and is used to obtain many exact results on electrical and thermal transport in one-dimensional disordered wires. Some of these have earlier been obtained using nonequilibrium Green function methods. We examine the role that reservoirs and contacts can have on determining the transport properties of a wire and find several interesting effects.Comment: 10 pages, 4 figure

    Fragmented in space: the oral history narrative of an Arab Christian from Antioch, Turkey

    Get PDF
    This study uses the case of Can Kılçıksız, an Arab Christian refugee youth from Antioch, Turkey, to argue that globalization may result in fragmented families and subjectivities and can also accelerate processes initiated by modernity and the construction of national identities. Can Kılçıksız and his siblings now live in Turkey, Germany, France and Finland. His life story suggests that males of Arab Christian origin from Antioch who had access to schooling are more likely to be involved in politics whereas females tend to be drawn to evangelical Christian organizations. The case also suggests that sibling ties might prove more durable in the course of transnational migration than conjugal ties. The case of Can Kılçıksız shows that the time/space linked to childhood through memory can play an important role in identity construction of subjects circulating in transnational space

    A Generic System for the Expression and Purification of Soluble and Stable Influenza Neuraminidase

    Get PDF
    The influenza surface glycoprotein neuraminidase (NA) is essential for the efficient spread of the virus. Antiviral drugs such as Tamiflu (oseltamivir) and Relenza (zanamivir) that inhibit NA enzyme activity have been shown to be effective in the treatment of influenza infections. The recent ‘swine flu’ pandemic and world-wide emergence of Tamiflu-resistant seasonal human influenza A(H1N1) H274Y have highlighted the need for the ongoing development of new anti-virals, efficient production of vaccine proteins and novel diagnostic tools. Each of these goals could benefit from the production of large quantities of highly pure and stable NA. This publication describes a generic expression system for NAs in a baculovirus Expression Vector System (BEVS) that is capable of expressing milligram amounts of recombinant NA. To construct NAs with increased stability, the natural influenza NA stalk was replaced by two different artificial tetramerization domains that drive the formation of catalytically active NA homotetramers: GCN4-pLI from yeast or the Tetrabrachion tetramerization domain from Staphylothermus marinus. Both recombinant NAs are secreted as FLAG-tagged proteins to allow for rapid and simple purification. The Tetrabrachion-based NA showed good solubility, increased stability and biochemical properties closer to the original viral NA than the GCN4-pLI based construct. The expressed quantities and high quality of the purified recombinant NA suggest that this expression system is capable of producing recombinant NA for a broad range of applications including high-throughput drug screening, protein crystallisation, or vaccine development
    corecore