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An instantaneou s normal mod e descriptio n of relaxation

in supercoole d liquids
T. Keyes, G. V. Vijayadamodar, and U. Zurcher

Departmen of Chemistry Bosta University, Boston Massachusett02215
(Receivel 25 Octobe 1996 acceptd 16 Decembe 1996

Relaxatim in supercoold liquids is formulated from the instantaneasinormd modes (INM) point
of view. The frequeng and temperatue dependene of the unstable imaginay frequeng lobe of
the INM densiy of states{p,(w,T)) (for simplicity we writew instead ofi w), is investigated and
characterizé over a broad temperatug range 10 = T = 0.42 in the unit densiy Lennard-Jones
liquid. INM theories of diffusion invoke Im-w modes descriptive of barrier crossing, but not all
imaginay frequeny modes fall into this category Ther exists acutoff frequencyw. sud that
modes with v < w. correspod to “shoulder potentials,” wherea the potentid profiles include
barrier-crossig doubk wells for ® > w.. Given tha only modes with @ > . contribue to
diffusion, the barrie crossimy rate, w,,, and the sef diffusion constat D, are shown to be
proportiona to the densiy of states evaluate at the cutoff frequency (p,(w.,T)). The densiy of
states exhibits crossove behavig in its temperatue dependene sud tha the exponential
T-dependene of D(T) crosss over from Zwanzig—Bassle exp(—E%T?) behavio at low T to
Arrhenius exp(—E/T) behavio at high T; the exponentibamay be too we& to be observedin which
cae D(T) is apowe law. Basel on the properties of LJ, agenerhINM descriptia of strorg and
fragile liquids is presentedwith a physica interpretatiom in terms of the “landscape’ of the
potentid enery surface © 1997 American Institute of Physics.

[S0021-960697)02711-§

I. INTRODUCTION

A new paradign of liquid stakt dynamic is emerging
basel upon instantaneosinormd modes (INM).! The INM
are the eigenfunctios of the force constanh matrix, or Hes-
sian for arepresentatie configuration ultimately a configu-
ration avera@ is taken In orde to exploit the INM view-
poirt it is usefu to representhe liquid as apoint in a 3N-
dimension& configuratim space amd to think of the
dynamics as motion of this point over the totd potential
enery surfa@ U. The essentihfeatures of the U—surface
are the globd crystd minimum, the locd minima and asso-
ciated basirs or wells, and the saddé barriess connectirg the
wells. Thus the systen point may be considerefl to move
from well to well via aseries of barrier crossingsDuring its
sojourrs in the wells the liquid execute harmont oscilla-
tions which are interruptel by hopping correspondingly,
time correlation functiors are expressetlas superpositios of
dampe harmonc oscillata contributions.

Nea the bottam of a well, the INM are the conventional
lattice vibratiors of a disorderd lattice, with red frequencies
characterizig the upwad curvatue of the well. On the other
hand during barrie crossing U has downwad curvatue in
sone directions and the modes associatd with thos direc-
tions hawe imaginay frequenciesThus the configuratio av-
eragel INM densiy of states(p(w)), has two contributions,
(p(w))=(ps(w))+{p,(w)), where “s” refers to the real
frequeng “stable” modes ard “u’’ to the imaginay fre-
queny “unstable” modes Undampe unstabé modes ex-
hibit exponentia growth indicating the limits of a purely
harmont approab to liquids. We hawe suggestetitha the

lowed Im-w modes do not correspond to barriers. Investigat-

ing the potentid enery profiles alorg the INM normd co-
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ordinates Bemben& and Laird® verified this suggestionand
argwe tha only the barrie crossirg modes shoul be called
unstableNeverthelessve will kegp our “ u’’ notatian for all

Im-o modes. Usually imaginay INM frequencis are
treatel as negatie frequencie ard (p,(w)) is plotted along
the negatie red frequeng axis. In this article, which con-
cerrs the unstabé modes only, we simply use positive w to

denoe i w. Natural units are used in all Lennard-Jones fits

ard simulation datg T denotes temperatue in units of the
well depthe, density is N/V) &>, o is the hard core diameter,
frequeng is wr, 7is the LJ time. For ArgongKg=1198 K,
0=3.406 A and 7=2.18 ps. Temperature and energy are in-
terchangealelin thes units.

The INM formaligm is particulary appealig for super-
coold liquids. As T isdecreasedhe lifetime 7 of the system
poirt in the wells increasesthe systen stays close to the
bottam of the wells, ard the barrie hoppirg rate w,=7 *
decreasesThe more deepy supercoold the liquid, the
close it isto an amorphos solid, and the bette a candidate
itisfor an INM description Thisis afortunat circumstance,
since explanatia of the behavia of supercoold liquids con-
stitutes one of the mog challengiy area of theoretical
physicd chemistry However despie the growing body of
work on INM in liquids, little has been dore so far on de-
veloping an INM theoy for the signatue propertie§ of su-
percoole liquids, the mog importart being the strorg expo-
nentid temperatue dependene of relaxatin times In this
paper we presen the first stgp in sud a theory, an INM
treatmen and interpretation of the temperatue dependence
of the sef diffusion constantD.

The theol ress upan the detailed w, T dependence of
(p,(w)) over a broad temperature range=I=0.42, which
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we hawe determine for the unit densiy LJ liquid. However,
we are only intereste in LJ insofa as it reveas aform for

{pu(w)) which we will assume holds for more complex lig-

uids Thus we obtan a generd INM formalism for the de-
scription of relaxation in supercoold liquids. Within this
schemeas T increase from the vicinity of the glass transi-
tion Tg, D(T) can chang from Zwanzig—Basslef [“ZB,”

exp(—E?/T?)] to Arrhenius [exp(—E/T)], to powe law. The
ranges of the different characterist T-dependenceard the
possibility that a given T-dependenrewill be visible, are de-
termineal by the parametes in the model Dependig on the
values of the parametersarich variety of T-dependenceare
possible including thosé of “strong”” and “fragile’’ liquids.

II. INM THEORY OF SUPERCOOLED LIQUID
DYNAMICS

Zwanzig proposed tha harmont oscillatiors in the lo-
cd minima of the N-body potentid are randomize by bar-
rier crossing with the resut for the velocity correlation func-
tion,

C(t)=Tf dwpy(w)cod wt)exp — wpt),= (2.1

Keyes, Vijayadamodar, and Zurcher: Relaxation in supercooled liquids

formed in Ref. 4 determine everythirg but the parametem
in Eq. (2.4) for the unit densiy LJ liquid; for simplicity we
choe m=2, correspondig to a one-dimensioria“reaction
coordinate.” With m=2 and with the approximag¢ quenched
pq(w), we obtained quantitatively accurate diffusion con-
stans for 1.25>T>0.66 the melting temperatue is ~1.8,
ard our data go down to T=0.42.

The functiond form determine for the supercoold lig-
uid is

(pu(@,T)=a(T)w exp —co*/T?).

(supercoold liquid) (2.5
Note that for a single w, Eqg. (2.5 has ZB T-dependence.
However the expressia obtained for D was D(T)/T~T%?,
powe law behavior The integrard in Eq. (2.4) has exponen-
tial T-dependene at a single w, but only a power law re-
mairs after the integration We conside this to be acrucial
point In the INM formalism the hoppirg rate is expressé as
a frequeny integral which suns the contributiors of the
barriess with different curvaturs (w). The barriers with a
particula curvatue may contribue exponentia T-depend-
ence to D, but the sum ove all barriers is the ultimate ar-

wherepy(w) is the quenched density of states representativ®iter of how D depend on T. A parallé argumen may be

of thelocd minima Integratio yields the diffusion constant;

in the deepy supercoold liquid, where w,—0,
D(T)/T=(w %) oy .~ (2.2

We proposefl that w,, could be calculatel from the
imaginay frequeny INM densiy of states (p,(w)). The
physica reasm is*® tha (p,(w)) may be written,

(pu(@, T)=a(T)G(, T)(pu(w, T=»)), (2.3

where G(w,T) is theaveraged Boltzmann factdor barriers
with curvaturew, (exp(— BE)),,; clearly, {p,(®,T)) must be
proportiond to the Boltzmam probability of visiting a bar-
rier with curvaturew. Similarly, for barriers with a giverm,
all exponentih T-dependene of the hoppirg rate is deter-
mined on averag by this sane quantity, ard the totd rate is
obtainel by summirg over all frequenciesin short, w,, may
be expresseé as afrequeng integrd of (p,(w)), [Eq. (26) of
Ref. 4],

wh=m%f do(o/ o) f(o,0mn) (@) py()),
(2.9
where m is the averagd numbe of minima connectd to a

barrier, a(T) isthe «—independent multiplicative factor ob-

tained in a fit of the w, T dependence ofp,(w)), and c,
determine the T-dependene of a(T), a(T)=c;—c,f(T);
fu(T), the “fraction of unstabé modes,” is the frequency

integrd of (p,(w)). The hopping rate depends, irrespective of

INM theory, upan the formula used for the rate of crossimg a
single well-characterizé barrier The quantiy f(w,w,,) is
the pre-exponentiafactar in the chose rate law. In Ref. 4
we use transitian stae theory, with f(w,w.,) =0 /(27).
Combination of Eqs (2.2 and (2.4) yields an INM
theoly of sef diffusion in supercoold liquids. Fits per-

phrase in terms of the activation energy a barrigr with a
given E makes an Arrhenius contributian to w,, but the sum
ove contributiors from all E, performal with use of the
distribution of barrie heighs g(E), can hawe almog any
T-dependenceThe exponentib T-dependeneof (p,(w,T))
is just tha of the averagd Boltzmam factor, G(w,T); for
supercoold LJ,

G(w,T)~exp —co?/T?).~ (2.6

For T<0.66 the simulatel D/T begh to fall below the
powe law, suggestig tha exponentia T-dependence—the
dominane of activatel barrie crossing—wa beginnirg to
sd in. How can this be found in the theory? The answe lies
in implementirg the cutoff describe in the introduction rec-
ognizing tha modes with w<w, do nat correspod to barri-
ers ard shoutl be excludel from wy, by putting alower cutoff
w; on the integrd in Eq. (2.3). Now, the origind powe law
is recovere at high temperaturebut ZB behavia ‘survives’
the cutoff integration and manifess itseff at low T,

D(T)/T~T32 exp(— coti T ~TG(w, T);= (2.7
a fit to the daia gave w,~5. Clearly, the lower cutoff is
essentih to an INM descriptim of the exponential
T-dependene of dynamicd quantities in supercoold lig-
uids Equation (2.7) is aspecifc exampe of one of our most
importart results in general we suggesthat

D(T)~G(w.,T) (exponentib T—dependene only).
(2.8

The use of a cutoff was put on asourd bass by Bem-
bene& and Laird. We hawe found similar behavior and
sone analytica results in acalculatiorl base on application
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An[<p(w)>/m]

FIG. 1. Frequeng dependene of unstabé densiy of states expresse by
—In[{p(w))/w] at three temperatures, raw data and final @mooth lines
both shown T=0.50 (sharpesrise), T=1.0, T=5.0 (weakesrise).

of the “soft potentid model” to liquids. Bembenek and

Laird refer to the doubk well imaginaryo modes as the true

“unstable modes’; theirr densiy of unstabé modes has a
lower cutoff w,, from which it rises smoothly—t is not just
the cutoff (p,(w)). Nevertheless, a cutofp,(w)) reproduces
all the important physica and qualititative features of the
INM descriptio of supercoold liquids, and we will useit in
the following.

Anothe piece of the puzzk has recenty fallen into
place Vijayadamoda ard Nitzan!® studyirg the normal
rathe than the supercoold unit densiy LJ liquid, found

(pu(w))=a(T)w exp(—cw?T),~ (norma liquid)

(2.9
i.e, G(w,T)~exp—cw?/T) ard Arrhenits T-dependence
for D(T) viaEq. (2.8). With {p,(w)) described by Eqg2.9
ard (2.5 at high ard low temperaturesrespectively the
INM theory will yield a crossove from Arrhenius to ZB
T-dependene at sone intermedia¢ temperature Sinee the
presene or absene of sud a crossove is wha distin-
guishe$ “fragile’’ from “strong” liquids, we now hawe an
INM window upaon this mod fundamenthcharacterizatio of
supercoold liquids. A fit of {p,(w)) for unit density LJ over
the range 10>T>0.42 which reproduce the two limiting
forms, will be reportal in the nex section and usal in the
calculation of wy,. It is not the behavig of LJ that is particu-
larly interesting but the suggestia of a generh modd of
exponentih T-dependene applicabe to all supercoold lig-
uids.

Ill. THE FUNCTIONAL FORM OF THE IMAGINARY
FREQUENCY DENSITY OF STATES

We haw tried severa functiond forms with the indi-
cata limiting behavia for (p,(w;T)) in unit density LJ for
10.0>T>0.42 our simulation methal for the supercooled
points is describd in Ref. 4. The obvious try of an exponent
which is a sum of an w? term ard an o® tem is unsatisfac-
tory becaus¥ «? is the high frequeng behavia of the ex-
ponent Various algebrag functions which are corred in this

4653

-In[<p(w)>/®]

FIG. 2. Quantities in Fig. 1 as afunction of scalel frequeny (); T=0.50
(solid/dottel line), T=1.0, T=5.0 (uppermoscurves.

regad [e.g.,0"(1+ ®?)] still gawe poa fits. A very good and
physicaly illuminating schene has finally emerged The
startirg poirt is

—In[{pu(@; T @]=ay(T) +[a(MQI* "~ (3.D

wher we introdue the scal@ frequency Q=w/|T, sug-
gesta by the exponerd in Eqs (2.5 and (2.9). The density
of statesis nat afunction of ) only, and we cannda collapse
the data from different T onto a maste plot with introduction
of ). Nevertheles the curves at different T are much more
similar viewed as functiors of (); this is demonstrate in
Figs 1 and 2, which also include the fits in their final form.
In the following a,(T), which determine amultiplica-
tive constanin {p,(;T)), is not so interesting and we focus
on the secom and third parametersFitting our simulation
datwith Eq. (3.1) leadsto resulsfor a,(T) shownin Fig. 3.
The we& variation of a,(T), which increass by a facta of
~1.6 while T increase by ~24, is clearly a consequereof
the use of the scalal frequency Since we wart to minimize
the numbe of parameterst would be desirabé to be able to
trea a,(T) as atemperatue independenconstanta,. More

0.2

0.19

018

017

ag(T)

0.16 |

015}

0.14

FIG. 3. Parametea,(T) for fit to raw datdsolid line) and for converge fit
to Boltzmam factar only.
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4.5

ag(m

FIG. 4. Parametea,(T) for fit to raw daf (solid line), for converge fit to
Boltzmam facta only (large dashey and Eq. (3.5b).

importantly, a constah a, has physica implications as we
discus later. Furthe refinemem of the fit procedue makes
this possible.

The values of a;(T) are shown in Fig. 4. The exponent
is ~4 at the loweg supercoold temperature ard falls with
increasily T. We expedt that the high-T value of a5(T) is 2,
correspondig to Arrheniuss behavior Before T=10 is
reachedhowever a;(T) drops below 2, reachimg az=1.87 at
T=10. This behavior while initially troubling is in fact the
key to understandig the , T dependence of the density of
unstabé modes.

According to Eq. (2.3), {p,(w)) reaches a well defined
high-T limit. In this limit the Boltzmam facta is irrelevant
ard we are seeig properties of the potentid surfae only.
There will be acorrespondig contributian to the RHS of Eq.
(3.1), which mug be removael to obtan the Boltzmam fac-
tor; interpretirg the entire exponemas if it were aBoltzmann
exponem will lead to confusion Defining the RHS as
a,(T)+xp(w,T) we therefore write

XP(w,T)=XG(w,T) + X, (w), (3.2
ard the Boltzmam facta exponeh xG(w,T) defined by
G(w,T)=exd —xG(w,T)], (3.3

goverrs relaxation in supercoold liquids.

Both xG(w,T) and x,.(w) are found with an iterative
application of Eq. (3.1). In a first approximation it is as-
sumael that x..(w) =xp(w,T=20); we thus repeat our initial

Keyes, Vijayadamodar, and Zurcher: Relaxation in supercooled liquids

0016
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FIG. 5. Simulatel unstabé densiy of states at T=0.50 (solid line), con-
vergel fit using Eq. (3.5b with numericaly determine parametec; (large
dashep two parametefit using calculatel c;=In2/In T, .

a;(T)—describimg the Boltzmam facta only—shoutl reach
an asymptott value of 2 ard fit it, for 10>T>0.42 to the
function,

az(T)=2+(Tg/T)= A (3.9

which agah was found after mary othe tries. Here we in-

trodue Ty, one of the three physicaly significant tempera-
tures in our formulation of supercoold dynamics it is the
crossove temperatue below which stronge than Arrhenius
behavio set in due to the dominan role of barrieg height
fluctuatiors (FI), or “nonuniform roughness™! of the po-
tentid enery surface hereafte referral to as the “land-

scape.”

From Eq. (3.4 we calculae a;(20) and thus with the
median a,, XG(w,20). Subtracting this fromxp(w,T=20)
leads to asecomnl approximatim to x..(w), and now the itera-
tive procedue is apparentThe third approximatio has con-
vergal to within the noise leadirg to our final results,

—In[{py(@;T))/ @]=2a1(T)+X..(@)+(0.12a2)** T,

(3.5a
ay(T)=2+(4.95T)%2°~ (3.5b
Xoo (@) =0.0114015°— 0.0 064w?8" - (3.50

thus Tg=4.95 The fina a,(T), ard a3(T) alorg with Eq.
(3.5b), arein Figs 3 ard 4. The constang of a,(T) gener-
atad by the iterative fit is striking, and az(T) is now quite
plausiblyy equa to two in the high-T limit. Note that al-
thouch we fit az(T) with Eq. (3.4b to estimaé the T=20

fits, only xp(w,T=20) is subtracted from the raw data for Boltzmam factor, the values of a;(T) were unconstraind in
—In[{py(w,T)) w]. The first benefit of the method appears the subsequerfits. Sonme representati® (p,(w,T)) and their

in aneary constam a,(T) for 5>T>0.42 a,(T) begirs to
vary at highea T but tha is aconsequere of being at an
early step (final versian shown in Fig. 3) in the iteration with
an unfinishal estimae of x.(w). It is indeed possible to con-
strud fits, with minimd loss of quality, using a T-independ-
ern a,, which we choo® as the media of a,(T) for 10>T
>0.42 Using that value (a,=0.117 at this point) as(T) is
then redeterminedand the new a;(T) shav a more system-
atic lesss noisy~ variationn We- now- assume that

fits are shown in Figs 5—7; a5(T) is taken from Eq. (3.5b),
it is not the optimum ag, but the fits are good Figure 8
displays x..(w); for 40>w>5 it is quite linear. Of course it
eventualy becoms unphysicaly negative for »>100, but
this is an artifact The numerica value of xp(w,20)~w*>°
arises from the sum of a neary linea x.(w) with a slightly
stronge than quadratt Boltzmam exponent Exponential
decy of (p,(w,T)) in the highT limit has intriguing*
physicéd implications.

J. Chem. Phys., Vol. 106, No. 11, 15 March 1997
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FIG. 6. As Fig. 5 for T=2.00.

IV. PHYSICAL INTERPRETATION OF THE FIT;
DIFFUSION

In the high-T limit the cummulahn expansio of
(exp(—BE)), mug be rapidly convergehand we have

G(w,T)=exp(— B(E(w,T=x))); 4.1
comparisa with the high-T limit of the fit yields
(E(w,T=%))=a3w?.~ (4.2)

In the origind form of the fit, with a,(T), Eq. (4.2) would
contah a,(T=o), ard the quantity, a,(T)?%w? would have
no particula significance The remarkab$ constang of a,
which we found ard the resultirg fit with constan a,, thus
has two importart physicad implications First, it suggests
tha the averagd barrie height for a given o is
T-independentchangs in the landscap as T decreasgin-
creae the fluctuatiors leaving the mean unchangedSecond,
the mean appeas prominenty in G(w,T) even atT where
the fluctuatiors are dominant the mean plays an important
role in expressig the fluctuations.

Termsin the cummulan expansio after the first contain
the fluctuations so the only way G(w,T) can attain a non-
Arrheniws fractiond form is by fluctuation domination re-
quiring a resummatia of the cummulan series Since
T<Tg is the condition for non-Arrhenis behavior we con-
clude that, for T<Tg, the landscap is dominatel by fluctua-
tions or is “nonuniformly rough,” while T>Ty, is the re-
gime of uniform roughness This is in accod with the
views'! of Stillinger. In sum a, determins the mean energy,
and T, is the crossove temperatureor energy for uniform
to nonunifom roughness.

From Eqg (2.8), the exponentia T-dependene (not
powe law contributiong of D(T) is predictel to be
G(w¢,T). In the absene of fluctuations Eq. (4.2) would
yield the minimum barrier, E,;,=a3w?2. Becaus of fluctua-
tions there will exig barries with E<E,;,, but we expect
that the distribution of barries will fall off very sharpy for
E<Enin, and tha E;, is an estimae of the smalle$ usable
barrier The exponentia T-dependeneof D(T) is then [Eq.
(3.5].

4655
0.018
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FIG. 7. As Fig. 5 for T=10.00.
D(T)~ eXF{ - (Tmin/T)aS(T)lz]
(exponentid behavia only) 4.3

ard the significane of T, for diffusion is clear For

T>Tnin, the exponenis small strorg T-dependenecannot
occur, ard D(T) will be powe law. For T<T,,, exponential
T-dependenesesin, ard T, is the crossove T for power
law to exponentia T dependencedPhysically for T> T, the

systen can always find a barrier with E<T, so activated
barrie crossimg is unnecessaryand conversely Mode cou-

pling theony? in its origind form predics tha D should
vanid at a critical temperatue T, as a powe law (T—T,)¢,

ard later versiors identify T, as a temperatue for crossover
to activatel behavior Thus T, ard T,,;, are relatel empiri-

cally, but the physica pictures seen different.

The importane of the minimum barrie enery illus-
trates the care needé in interpretirg the T-dependene of
diffusion, even given the idea tha barria crossim is the
governirg process A plausibk intuitive gues for D(T)
would be exp(—(E)/T), wher (E) is the mea barrig en-

25

X(w)

05}

FIG. 8. Frequeng dependene of the negatie of the numericaly deter-
mined exponen for the unstabé densiy of states in the infinite temperature
limit.
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ergy. The high T limit of Eq. (4.3 is exp(— T /T), how-
ever, indicating tha the minimum energy not the mean is
the activatian energy.

In studies of supercoold liquidsit is often usefu to refer
temperatue to the glas transitim temperatue Tg,
T—T/Tg. Eqgs (3.5 ard (4.3 still hold with all the T re-
ferred to Tg. With the new conventio ard the estimates
from Ref 4, T;~0.33 and w.~5, the parametes for unit
densiy LJ are T,;;=1.08 T=14.85 The unusué behavior
of this systen is succincty summarizd by thee numbers;
LJ is in the fluctuation-dominatednon uniformly rouch re-
gion of the potentid surfa@ for a very broad T-range (T
<14.85 but for the mog patt this is irrelevart to diffusion;
Tmin IS SO close to unity tha only just abowe the glass tran-
sition does activatal barrig crossiry becone important The
presene of a nonuniformi/ rouch landscap will not lead to
stronge than Arrhenius behavior or for tha matte arny ex-
ponenti& behavior if barriess with E<T are readily avail-
able.

The leag obvious paramete to interpre is cz, which
goverrs the abruptnes of the increag of as(T) from its
limiting high-T value of two as T falls belov Tg,. Now, we
do not wish to focus on LJ; it is our hope tha the ideas
developé here apply to supercoold liquids in general with
different substancecharacterize by different values of the
parametersFor a full understandig of the parametersit is
necessarto see how they vary from substane to substance.
Thus we hawe usa Eq. (4.3 to fit 1, the invers of the
shea viscosiy (data taken from Ref. 6), for the prototypical
“fragile’’ liquid, ortho terphenyl Recem work'* has shown
tha the Stokes—Einsten law, D »~T, breaks down close to
the glass transition but it will sere as afirst approximation
to the exponentia T-dependenceA god fit results with
Tmin=5.29 Tg=1.51 ard agan the parametes nicely sum-
marize the behavio of OTP. Exponentié behavia is visible
for T<5.29 with a highe minimum barrieg (relative to Tg)
then LJ, and the Arrheniuss—non-Arrhenis crossove at
T=1.51 is sudch tha both types of T-dependene are easily
observe before the glass transitian is reached.

In LJ, D(T) is very close to a ZB law just abow the
glass transition as(Tg)/2=2.09 It is suggestie tha the
non-Arrhenis behavia in the fluctuation dominate region
follows astandad model but this is by no mears built into
the fitting function there are no constraing on ag(Tg). Thus
it is extremey gratifying to not that for OTP,
as(Tg)/2=2.2], basicaly ZB agan for the deepy super-
coold liquid. One canna help speculat that, in general,
as(Tg)/2~2. The evidene is for a value slightly greater
than two, but we suggesthat a physically appealingnumeri-
cally accurag fit may be had with az(Tg)/2=2, in which
ca® c; is determinedcs=In 2/In Tr. With this relation the
fit contairs two parametes only, assumig tha T is avail-
able separately Fits using the calculatel c; are shown in
Figs 5-7, and quality is comparale to tha obtaine with
the “true’’ c5. In the curren viewpoint ZB behavio is the
consequere of fully developé barrie heigh fluctuations,
and c; simply adjussitseff so that irrespectie of Ty, ZB is
attainel at the glass transition.
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Te FLUCTUATION
T DOMINATED
OoOTP
1 /
Arrhenius
/,.Strong

o 1 T min 6

T

FIG. 9. Two parameteclassificatio of liquids. T-dependereof relaxation
is representa by a straigtt line passig through the four possibé physically
distind regiors in [(T,i/T), (Tg/T)] plane LJ, OTP, ard a generc strong
liquid are shown.

Fragile liquid behavia is believed to be aconsequence
of nondirectionglvan de Waak intermolecula interactions.
Thus rare gas liquids, naot OTP, shoul be the ultimate frag-
ile liquids. Of cours the supercoold states of such simple
liquids cannd be studied in the laboratory but the logic ap-
plies to our simulation of LJ. At first, it would not appear
possibe that a liquid exhibiting power-lav D(T) down to
T/Tg=1.08 could be an exempla of “fragility.” * However,
with the expandd viewpoirt availabk throudh (p,(w,T))
LJis clearly sea to be an exceptional} fragile liquid, with
nonuniformy roughnes over the enormos range 14.85
>T/Tg>1. This characterist “fragile’’ potentid surface
topology does nat manifes itself in astronge than Arrhenius
D(T) until T<T,, but the correlation betwea the nature
of the intermolecula interactiors arnd the topology still
holds Apparenty the mog meaningfli correlation is be-
tween the interactiors ard T, the extert of the nonuni-
formly rough region of the landscapgwhich may or may not
manifes itseff in D(T) dependig on the value of T,,. The
densiy of statesis amore sensitive indicata of fragility than
is D(T), conveyirg usefu information abou the landscape
at temperaturewhere D(T) is an uninformative powe law.

A schemat classificatiom of strorg and fragile liquids is
possibk basel upon the two temperature (relative to Tg),
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T, and T, - Conside atwo-dimensionhCartesia coordi-
nae frame where the x axisis T,/ T and the y axis Tg/T.

The stak of a liquid vs T is representé as astraigh line in

the plane startirg at zerq with slope=Tg/T,, and terminat-
ing at a point determine by T . Figure 9 represerd unit

densiy LJand OTP in this schemealong with a hypothetical
strorg liquid. Sokolov® has observe that the ratio, T,/Tg,

is close to unity in fragile liquids than in strong Identifying

T min With the mode coupling T, , this makes obvious seng in

terms of Fig. 9.

The LJ simulatiors are at constan density while experi-
mens on OTP are at constah pressure Our hope is that
constah T or constam P conditiors manifes themselve in
different values for the parametersbut the bast ideas pre-
sent&l here hold for both cases verifying this is a current
researh project Fig. 9 describe *‘P=1 atm” OTP ard unit
densiy LJ, nat these substancein general Furthe research
on the pressue and densiy dependeneof (p,(w,T)) should
allow an INM treatmen of the P dependene of fragility,
anothe topic® of contemporay interest.

V. SUMMARY

The T-dependene of relaxation times in liquids has
beef! exhaustivel studied ard is currently>!* a field of
active investigation Crossoverfrom powe law to Arrhenius
ard from Arrhenius to stronge exponentib T-dependence
occupies a centrd role in thes studies On the othe hand,
INM theow is quite new, ard we hawe only here for the first
time, analyzel the T-dependeneof (p,(w,T)) over a range
broad enoudn to obsere crossover We find tha the
T-dependereof {p,(w,T)) mirrors that of D(T).

The behavio of (p,(w,T)) is readily interpreted in
terms of the potentid enery landscapgand thus an INM
theow of D(T) provides an excellen link betwea the land-
scae and D(T); we beliewe tha INM is uniquey suited to
provide sud a connection Much will be learnel by simply
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repeatiry this work for differernt densities and chemicé sub-
stancesarnd by analyzirg constan pressue quenchesINM

aloo connecs very well with the views outlined by
Sokolov!® who divides ‘mesoscopit dynamis into ‘relax-
ationliké contributiors from anharmorg doubk well poten-
tials ard ‘quasi-local harmonc modes and notes tha that
the mesoscomi dynamics remarkably correlate with struc-
turd relaxation which can be 10 ordess of magnitue slower.
This picture correspond explicitly to doubke well Im—w
INM, harmont Re—w INM, and the calculation oD(T)

(structurd relaxation from the INM. Similarly, INM theo-
ries can provide”™ new insighs into othe aspecs of super-
coold liquids, suc as* the role of spatid heterogeneity.
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