211 research outputs found

    THE EFFECT OF LANGUAGE BARRIERS ON VARIATION AND RECEIPT OF EARLY STAGE BREAST CANCER TREATMENT

    Full text link
    Background: Arriving at and implementing an appropriate patient centered treatment plan for early stage breast cancer requires significant dialogue between healthcare providers and patients. How language barriers affect this process has not been thoroughly explored in the literature. The aim of this paper is to examine the effect of language barrier on variation and receipt of early stage breast cancer treatment. Methods: Rates of lumpectomy, mastectomy, and contralateral prophylactic mastectomy (CPM) with or without reconstruction were compared between English speaking and Low English Proficiency (LEP) cohorts. Patients with recurrent or bilateral breast cancer, male patients, and/or known genetic mutations were excluded. Receipt of recommended treatments including chemotherapy, hormonal therapy and radiation were compared between the two groups, as well as patient refusal and loss of follow-up. Regression analysis for all-cause mortality within this time period was tabulated for each group. Results: There were no significant differences between receipt of recommended treatments, patient refusal or loss of follow up between the cohorts. LEP patients had a greater proportion of lumpectomies (79.7 versus 70.7%) while 9.2% of English-speaking patients had CPM or CPM with reconstruction compared to none of the LEP patients. These trends, however, did not rise to statistical significance within our small population sample. Age, insurance type, and LEP were associated with significant difference in all-cause mortality, however only age and insurance remained significant in adjusted analysis. Conclusion: Our results indicate a non-statistically significant trend towards less variation of surgical treatment variation for early stage breast cancer in the LEP population, including a greater frequency of lumpectomy and less utilization of CPM. Larger, multicenter studies would be needed to affirm and further investigate these trends

    Nutritional physiology of life-history trade-offs: How food protein–carbohydrate content influences life-history traits in the wing-polymorphic cricket \u3ci\u3eGryllus firmus\u3c/i\u3e

    Get PDF
    Although life-history trade-offs result from the differential acquisition and allocation of nutritional resources to competing physiological functions, many aspects of this topic remain poorly understood. Wing-polymorphic insects, which possess alternative morphs that trade off allocation to flight capability versus early reproduction, provide a good model system for exploring this topic. In this study, we used the wing-polymorphic cricket Gryllus firmus to test how expression of the flight capability versus reproduction trade-off was modified across a heterogeneous protein–carbohydrate nutritional landscape. Newly molted adult female long- and short-winged crickets were given one of 13 diets with different concentrations and ratios of protein and digestible carbohydrate; for each cricket, we measured consumption patterns, growth and allocation to reproduction (ovary mass) versus flight muscle maintenance (flight muscle mass and somatic lipid stores). Feeding responses in both morphs were influenced more by total macronutrient concentration than by protein–carbohydrate ratio, except at high-macronutrient concentration, where protein– carbohydrate balance was important. Mass gain tended to be greatest on protein-biased diets for both morphs, but was consistently lower across all diets for long-winged females. When long-winged females were fed high-carbohydrate foods, they accumulated greater somatic lipid stores; on high-protein foods, they accumulated greater somatic protein stores. Food protein–carbohydrate content also affected short-winged females (selected for early reproductive onset), which showed dramatic increases in ovary size, including ovarian stores of lipid and protein, on protein-biased foods. This is the first study to show how the concentration and ratio of dietary protein and carbohydrate affects consumption and allocation to key physiological features associated with the reproduction–dispersal life-history trade-off

    Nutritional physiology of life-history trade-offs: how food protein-carbohydrate content influences life-history traits in the wing-polymorphic cricket Gryllus firmus

    Get PDF
    AbstractAlthough life-history trade-offs result from the differential acquisition and allocation of nutritional resources to competing physiological functions, many aspects of this topic remain poorly understood. Wing-polymorphic insects, which possess alternate morphs that trade off allocation to flight capability versus early reproduction, provide a good model system for exploring this topic. In this study we used the wing-polymorphic cricket Gryllus firmus to test how expression of the flight capability vs. reproduction trade-off was modified across a heterogeneous protein-carbohydrate nutritional landscape. Newly molted adult female crickets were given one of 13 diets with different concentrations and ratios of protein and digestible carbohydrate; for each cricket we measured consumption patterns, growth, and allocation to reproduction (ovary mass) vs. flight muscle maintenance (flight muscle mass and somatic lipid stores). Feeding responses in both morphs were influenced more by total macronutrient concentration than protein-carbohydrate ratio, except at high macronutrient concentration, where protein-carbohydrate balance was important. Mass gain tended to be greatest on protein-biased diets for both morphs, but was consistently lower across all diets for long-winged females. When long-winged females were fed high-carbohydrate foods they accumulated greater somatic lipid stores; on high-protein foods they accumulated greater somatic protein stores. Food protein-carbohydrate content also affected short-winged females (selected for early reproductive onset), which showed dramatic increases in ovary size, including ovarian stores of lipids and protein, on protein-biased foods. This is the first study to show how the concentration and ratio of dietary protein and carbohydrate affects consumption and allocation to key physiological features associated with the reproduction-dispersal life-history trade-off.</jats:p

    \u3ci\u3eJhe in Gryllus assimilis\u3c/i\u3e: Cloning, sequence-activity associations and phylogeny

    Get PDF
    The 458 amino acid sequence of a mature JHE protein from the cricket Gryllus assimilis was identified after isolating the partial cDNA sequence encoding this protein from a fat body and midgut cDNA library. This hemimetabolan JHE sequence shows over 40% amino acid similarity to the known JHE sequences of several holometabolous insects. It also includes previously determined peptide sequences for G. assimilis JHE as well as two other motifs associated with JHE enzymes in holometabolous insects. The predicted molecular weight of the protein agrees with that of the JHE previously purified from G. assimilis. Partial genomic sequence encoding the Jhe contains two large (1330 and 2918 bp) introns. No coding DNA sequence variation was observed over a 1293 bp region between selected lines differing six to eight-fold in hemolymph JHE activity. However, a 19 bp indel was found in one of the introns; the insertion was strongly associated with elevated hemolymph activity, both in the selected lines and in the F2 progeny of crosses between them. Phylogenetic analyses localised the G. assimilis JHE to a clade containing dipteran and coleopteran JHEs, with lepidopteran JHEs occurring in a separate clade

    \u3ci\u3eJhe in Gryllus assimilis\u3c/i\u3e: Cloning, sequence-activity associations and phylogeny

    Get PDF
    The 458 amino acid sequence of a mature JHE protein from the cricket Gryllus assimilis was identified after isolating the partial cDNA sequence encoding this protein from a fat body and midgut cDNA library. This hemimetabolan JHE sequence shows over 40% amino acid similarity to the known JHE sequences of several holometabolous insects. It also includes previously determined peptide sequences for G. assimilis JHE as well as two other motifs associated with JHE enzymes in holometabolous insects. The predicted molecular weight of the protein agrees with that of the JHE previously purified from G. assimilis. Partial genomic sequence encoding the Jhe contains two large (1330 and 2918 bp) introns. No coding DNA sequence variation was observed over a 1293 bp region between selected lines differing six to eight-fold in hemolymph JHE activity. However, a 19 bp indel was found in one of the introns; the insertion was strongly associated with elevated hemolymph activity, both in the selected lines and in the F2 progeny of crosses between them. Phylogenetic analyses localised the G. assimilis JHE to a clade containing dipteran and coleopteran JHEs, with lepidopteran JHEs occurring in a separate clade

    Loss of flight promotes beetle diversification

    Get PDF
    The evolution of flight is a key innovation that may enable the extreme diversification of insects. Nonetheless, many species-rich, winged insect groups contain flightless lineages. The loss of flight may promote allopatric differentiation due to limited dispersal power and may result in a high speciation rate in the flightless lineage. Here we show that loss of flight accelerates allopatric speciation using carrion beetles (Coleoptera: Silphidae). We demonstrate that flightless species retain higher genetic differentiation among populations and comprise a higher number of genetically distinct lineages than flight-capable species, and that the speciation rate with the flightless state is twice that with the flight-capable state. Moreover, a meta-analysis of 51 beetle species from 15 families reveals higher genetic differentiation among populations in flightless compared with flight-capable species. In beetles, which represent almost one-fourth of all described species, repeated evolution of flightlessness may have contributed to their steady diversification since the Mesozoic era

    Large Numbers of Matings Give Female Field Crickets a Direct Benefit but not a Genetic Benefit

    Get PDF
    Female crickets can potentially gain both direct and indirect benefits from mating multiple times with different males. Most studies have only examined the effects of small numbers of matings, although female crickets are capable of mating many times. The goal of this paper is to examine the direct and indirect benefits of mating large numbers of times for female reproductive success. In a previous experiment, female Gryllus vocalis were found to gain diminishing direct benefits from mating large numbers of times. In this study I attempt to determine whether mating large numbers of times yields similar diminishing returns on female indirect benefits. Virgin female Gryllus vocalis crickets were assigned to mate five, ten or 15 times with either the same or different males. Females that mated more times gained direct benefits in terms of laying more eggs and more fertilized eggs. Females that mated with different males rather than mating repeatedly with the same male did not have higher offspring hatching success, a result that is contrary to other published results comparing female reproductive success with repeated versus different partners. These results suggest that females that mate large numbers of times fail to gain additional genetic benefits from doing so

    The Effects of Larval Nutrition on Reproductive Performance in a Food-Limited Adult Environment

    Get PDF
    It is often assumed that larval food stress reduces lifetime fitness regardless of the conditions subsequently faced by adults. However, according to the environment-matching hypothesis, a plastic developmental response to poor nutrition results in an adult phenotype that is better adapted to restricted food conditions than one having developed in high food conditions. Such a strategy might evolve when current conditions are a reliable predictor of future conditions. To test this hypothesis, we assessed the effects of larval food conditions (low, improving and high food) on reproductive fitness in both low and high food adults environments. Contrary to this hypothesis, we found no evidence that food restriction in larval ladybird beetles produced adults that were better suited to continuing food stress. In fact, reproductive rate was invariably lower in females that were reared at low food, regardless of whether adults were well fed or food stressed. Juveniles that encountered improving conditions during the larval stage compensated for delayed growth by accelerating subsequent growth, and thus showed no evidence of a reduced reproductive rate. However, these same individuals lost more mass during the period of starvation in adults, which indicates that accelerated growth results in an increased risk of starvation during subsequent periods of food stress

    The Effect of Diet Quality and Wing Morph on Male and Female Reproductive Investment in a Nuptial Feeding Ground Cricket

    Get PDF
    A common approach in the study of life-history trade-off evolution is to manipulate the nutrient content of diets during the life of an individual in order observe how the acquisition of resources influences the relationship between reproduction, lifespan and other life-history parameters such as dispersal. Here, we manipulate the quality of diet that replicate laboratory populations received as a thorough test of how diet quality influences the life-history trade-offs associated with reproductive investment in a nuptial feeding Australian ground cricket (Pteronemobius sp.). In this species, both males and females make significant contributions to the production of offspring, as males provide a nuptial gift by allowing females to chew on a modified tibial spur during copulation and feed directing on their haemolymph. Individuals also have two distinct wing morphs, a short-winged flightless morph and a long-winged morph that has the ability to disperse. By manipulating the quality of diet over seven generations, we found that the reproductive investment of males and females were affected differently by the diet quality treatment and wing morph of the individual. We discuss the broader implications of these findings including the differences in how males and females balance current and future reproductive effort in nuptial feeding insects, the changing nature of sexual selection when diets vary, and how the life-history trade-offs associated with the ability to disperse are expected to differ among populations
    corecore