68 research outputs found
TFEB regulates murine liver cell fate during development and regeneration
It is well established that pluripotent stem cells in fetal and postnatal liver (LPCs) can differentiate into both hepatocytes and cholangiocytes. However, the signaling pathways implicated in the differentiation of LPCs are still incompletely understood. Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is known to be involved in osteoblast and myeloid differentiation, but its role in lineage commitment in the liver has not been investigated. Here we show that during development and upon regeneration TFEB drives the differentiation status of murine LPCs into the progenitor/cholangiocyte lineage while inhibiting hepatocyte differentiation. Genetic interaction studies show that Sox9, a marker of precursor and biliary cells, is a direct transcriptional target of TFEB and a primary mediator of its effects on liver cell fate. In summary, our findings identify an unexplored pathway that controls liver cell lineage commitment and whose dysregulation may play a role in biliary cancer
SOX9 regulated matrix proteins are increased in patients serum and correlate with severity of liver fibrosis
Extracellular matrix (ECM) deposition and resultant scar play a major role in the pathogenesis and progression of liver fibrosis. Identifying core regulators of ECM deposition may lead to urgently needed diagnostic and therapetic strategies for the disease. The transcription factor Sex determining region Y box 9 (SOX9) is actively involved in scar formation and its prevalence in patients with liver fibrosis predicts progression. In this study, transcriptomic approaches of Sox9-abrogated myofibroblasts identified >30% of genes regulated by SOX9 relate to the ECM. Further scrutiny of these data identified a panel of highly expressed ECM proteins, including Osteopontin (OPN), Osteoactivin (GPNMB), Fibronectin (FN1), Osteonectin (SPARC) and Vimentin (VIM) as SOX9 targets amenable to assay in patient serum. In vivo all SOX-regulated targets were increased in human disease and mouse models of fibrosis and decreased following Sox9-loss in mice with parenchymal and biliary fibrosis. In patient serum samples, SOX9-regulated ECM proteins were altered in response to fibrosis severity, whereas comparison with established clinical biomarkers demonstrated superiority for OPN and VIM at detecting early stages of fibrosis. These data support SOX9 in the mechanisms underlying fibrosis and highlight SOX9 and its downstream targets as new measures to stratify patients with liver fibrosis
Deletion of Wntless in myeloid cells exacerbates liver fibrosis and the ductular reaction in chronic liver injury
Background: Macrophages play critical roles in liver regeneration, fibrosis development and resolution. They are among the first responders to liver injury and are implicated in orchestrating the fibrogenic response via multiple mechanisms. Macrophages are also intimately associated with the activated hepatic progenitor cell (HPC) niche or ductular reaction that develops in parallel with fibrosis. Among the many macrophage-derived mediators implicated in liver disease progression, a key role for macrophage-derived Wnt proteins in driving pro-regenerative HPC activation towards a hepatocellular fate has been suggested. Wnt proteins, in general, however, have been associated with both pro-and anti-fibrogenic activities in the liver and other organs. We investigated the role of macrophage-derived Wnt proteins in fibrogenesis and HPC activation in murine models of chronic liver disease by conditionally deleting Wntless expression, which encodes a chaperone essential for Wnt protein secretion, in LysM-Cre-expressing myeloid cells (LysM-Wls mice)
Imaging Mass Spectrometry Reveals Tumor Metabolic Heterogeneity
Malignant tumors exhibit high degrees of genomic heterogeneity at the cellular level, leading to the view that subpopulations of tumor cells drive growth and treatment resistance. To examine the degree to which tumors also exhibit metabolic heterogeneity at the level of individual cells, we employed multi-isotope imaging mass spectrometry (MIMS) to quantify utilization of stable isotopes of glucose and glutamine along with a label for cell division. Mouse models of melanoma and malignant peripheral nerve sheath tumors (MPNSTs) exhibited striking heterogeneity of substrate utilization, evident in both proliferating and non-proliferating cells. We identified a correlation between metabolic heterogeneity, proliferation, and therapeutic resistance. Heterogeneity in metabolic substrate usage as revealed by incorporation of glucose and glutamine tracers is thus a marker for tumor proliferation. Collectively, our data demonstrate that MIMS provides a powerful tool with which to dissect metabolic functions of individual cells within the native tumor environment
- …