129 research outputs found

    Using fuzzy PROMETHEE to select countries for developmental Aid

    Get PDF
    Wealthy nations continue to demonstrate their unwavering support to improving conditions and the general well-being of poor countries in spite of the recent economic crises. However, as developmental aid relatively shrinks, both Aid donors and recipient countries have shown keen interest in methodologies used in evaluating developmental assistance programs. Evaluation of aid programs is seen as a complex task mainly because of the several non-aid factors that tend to affect overall outcomes. Adding to the complexity are the subjective sets of criteria used in Aid evaluations programs. This paper proposes a two stage framework of fuzzy TOPSIS and sensitivity analysis to demonstrate how aid-recipient countries can be evaluated to deepen transparency, fairness, value for money and sustainability of such aid programs. Using the Organisation for Economic Co-operation and Development (OECD) set of subjective criteria for evaluating aid programs; a numerical examplepre-defined by linguistic terms parameterized by triangular fuzzy numbers is provided to evaluate aid programs. Fuzzy PROMETHEE is used in the first stage to evaluate and rank aid-recipients followed by a comparative analysis with Fuzzy VIKOR and Fuzzy TOPSIS to ascertain an accurateness of the method used. A sensitivity analysis is further added that anticipates possible influences from lobbyists and examines the effect of that bias in expert ratings on the evaluation process. The result shows a framework that can be employed in evaluating aid effectiveness of recipient-countries

    UPF1, a Conserved Nonsense-Mediated mRNA Decay Factor, Regulates Cyst Wall Protein Transcripts in Giardia lamblia

    Get PDF
    The Giardia lamblia cyst wall is required for survival outside the host and infection. Three cyst wall protein (cwp) genes identified to date are highly up-regulated during encystation. However, little is known of the molecular mechanisms governing their gene regulation. Messenger RNAs containing premature stop codons are rapidly degraded by a nonsense-mediated mRNA decay (NMD) system to avoid production of non-functional proteins. In addition to RNA surveillance, NMD also regulates thousands of naturally occurring transcripts through a variety of mechanisms. It is interesting to know the NMD pathway in the primitive eukaryotes. Previously, we have found that the giardial homologue of a conserved NMD factor, UPF1, may be functionally conserved and involved in NMD and in preventing nonsense suppression. In this study, we tested the hypothesis that NMD factors can regulate some naturally occurring transcripts in G. lamblia. We found that overexpression of UPF1 resulted in a significant decrease of the levels of CWP1 and cyst formation and of the endogenous cwp1-3, and myb2 mRNA levels and stability. This indicates that NMD could contribute to the regulation of the cwp1-3 and myb2 transcripts, which are key to G. lamblia differentiation into cyst. Interestingly, we also found that UPF1 may be involved in regulation of eight other endogenous genes, including up-regulation of the translation elongation factor gene, whose product increases translation which is required for NMD. Our results indicate that NMD factor could contribute to the regulation of not only nonsense containing mRNAs, but also mRNAs of the key encystation-induced genes and other endogenous genes in the early-diverging eukaryote, G. lamblia

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3 and reports on five research projects.U.S. Department of Transportation Contract DTRS-57-88-C-00078TTD13U.S. Department of Transportation Contract DTRS-57-88-C-00078TTD30Defense Advanced Research Projects Agency Contract MDA972-90-C-0021Digital Equipment CorporationIBM CorporationJoint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-0001Schlumberger-Doll ResearchU.S. Navy - Office of Naval Research Grant N00014-90-J-1002U.S. Navy - Office of Naval Research Grant N00014-89-J-1019National Aeronautics and Space Administration Grant NAGW-1617National Aeronautics and Space Administration Grant 958461National Aeronautics and Space Administration Grant NAGW-1272U.S. Army Corp of Engineers Contract DACA39-87-K-0022U.S. Navy - Office of Naval Research Grant N00014-89-J-110

    Differential baseline and response profile to IFN-γ gene transduction of IL-6/IL-6 receptor-α secretion discriminate primary tumors versus bone marrow metastases of nasopharyngeal carcinomas in culture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding of immunobiology of bone marrow metastases (designated BM-NPC) <it>versus </it>primary tumors (P-NPC) of the nasopharynx is far from complete. The aim of this study was to determine if there would be differences between cultured P-NPCs and BM-NPCs with respect to (i) constitutive IL-6 and the IL-6 receptor gp80 subunit (IL-6Rα) levels in the spent media of nontransduced cells, and (ii) IL-6 and IL-6Rα levels in the spent media of cells transduced with a retroviral vector containing the <it>IFN-γ </it>gene.</p> <p>Methods</p> <p>A panel of NPC cell lines were transduced with the <it>IFN-γ </it>gene through a retroviral vector. Four clonal sublines were isolated <it>via </it>limiting dilution methods. Cytofluorometric analysis was performed for the detection of cell surface antigens of HLA class I, HLA class II and ICAM-1. ELISA was used to assay for IFN-γ, IL-6 and IL-6Rα in the spent media of cultured cell lines.</p> <p>Results</p> <p>Our results showed that in day 3 culture supernatants, low levels of soluble IL-6 were detected in 5/5 cultured tumors derived from P-NPCs, while much higher constitutive levels of IL-6 were detected in 3/3 metastasis-derived NPC cell lines including one originated from ascites; the difference was significant (<it>p </it>= 0.025). An inverse relationship was found between IL-6Rα and IL-6 in their release levels in cultured P-NPCs and metastasis-derived NPCs. In <it>IFN-γ</it>-transduced-P-NPCs, IL-6 production increased and yet IL-6Rα decreased substantially, as compared to nontransduced counterparts. At variance with P-NPC cells, the respective ongoing IL-6 and IL-6Rα release patterns of BM-NPC cells were not impeded as much following <it>IFN-γ </it>transduction. These observations were confirmed by extended kinetic studies with representative NPC cell lines and clonal sublines. The latter observation with the clonal sublines also indicates that selection for high IL-6 or low IL-6Rα producing subpopulations did not occur as a result of <it>IFN-γ</it>-transduction process. P-NPCs, which secreted constitutively only marginal levels of IFN-γ (8.4 ~ 10.5 pg/ml), could be enhanced to produce higher levels of IFN-γ (6.8- to 10.3-fold increase) after <it>IFN-γ </it>transduction. Unlike P-NPCs, BM-NPCs spontaneously released IFN-γ at moderate levels (83.8 ~ 100.7 pg/ml), which were enhanced by 1.3- to 2.2-fold in the spent media of their <it>IFN-γ</it>-transduced counterparts.</p> <p>Conclusion</p> <p>Our results showed that cultured P-NPCs and BM-NPCs could be distinguished from one another on the basis of their differential baseline secretion pattern of IFN-γ, IL-6 and IL-6Rα, and their differential response profiles to <it>IFN-γ </it>gene transfer of the production of these three soluble molecules. These results suggest that the IL-6 and IFN-γ pathways in a background of genetic instability be involved in the acquisition of metastatic behaviour in BM-NPCs.</p

    Functional Role of Dimerization of Human Peptidylarginine Deiminase 4 (PAD4)

    Get PDF
    Peptidylarginine deiminase 4 (PAD4) is a homodimeric enzyme that catalyzes Ca2+-dependent protein citrullination, which results in the conversion of arginine to citrulline. This paper demonstrates the functional role of dimerization in the regulation of PAD4 activity. To address this question, we created a series of dimer interface mutants of PAD4. The residues Arg8, Tyr237, Asp273, Glu281, Tyr435, Arg544 and Asp547, which are located at the dimer interface, were mutated to disturb the dimer organization of PAD4. Sedimentation velocity experiments were performed to investigate the changes in the quaternary structures and the dissociation constants (Kd) between wild-type and mutant PAD4 monomers and dimers. The kinetic data indicated that disrupting the dimer interface of the enzyme decreases its enzymatic activity and calcium-binding cooperativity. The Kd values of some PAD4 mutants were much higher than that of the wild-type (WT) protein (0.45 µM) and were concomitant with lower kcat values than that of WT (13.4 s−1). The Kd values of the monomeric PAD4 mutants ranged from 16.8 to 45.6 µM, and the kcat values of the monomeric mutants ranged from 3.3 to 7.3 s−1. The kcat values of these interface mutants decreased as the Kd values increased, which suggests that the dissociation of dimers to monomers considerably influences the activity of the enzyme. Although dissociation of the enzyme reduces the activity of the enzyme, monomeric PAD4 is still active but does not display cooperative calcium binding. The ionic interaction between Arg8 and Asp547 and the Tyr435-mediated hydrophobic interaction are determinants of PAD4 dimer formation

    Involvement of Iron in Biofilm Formation by Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is a human pathogen that forms biofilm on catheters and medical implants. The authors' earlier study established that 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG) inhibits biofilm formation by S. aureus by preventing the initial attachment of the cells to a solid surface and reducing the production of polysaccharide intercellular adhesin (PIA). Our cDNA microarray and MALDI-TOF mass spectrometric studies demonstrate that PGG treatment causes the expression of genes and proteins that are normally expressed under iron-limiting conditions. A chemical assay using ferrozine verifies that PGG is a strong iron chelator that depletes iron from the culture medium. This study finds that adding FeSO4 to a medium that contains PGG restores the biofilm formation and the production of PIA by S. aureus SA113. The requirement of iron for biofilm formation by S. aureus SA113 can also be verified using a semi-defined medium, BM, that contains an iron chelating agent, 2, 2′-dipyridyl (2-DP). Similar to the effect of PGG, the addition of 2-DP to BM medium inhibits biofilm formation and adding FeSO4 to BM medium that contains 2-DP restores biofilm formation. This study reveals an important mechanism of biofilm formation by S. aureus SA113

    Sex-differential genetic effect of phosphodiesterase 4D (PDE4D) on carotid atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phosphodiesterase 4D (PDE4D) gene was reported as a susceptibility gene to stroke. The genetic effect might be attributed to its role in modulating the atherogenic process in the carotid arteries. Using carotid intima-media thickness (IMT) and plaque index as phenotypes, the present study sought to determine the influence of this gene on subclinical atherosclerosis.</p> <p>Methods</p> <p>Carotid ultrasonography was performed on 1013 stroke-free subjects who participated in the health screening programs (age 52.6 ± 12.2; 47.6% men). Genotype distribution was compared among the high-risk (plaque index ≥ 4), low-risk (index = 1-3), and reference (index = 0) groups. We analyzed continuous IMT data and further dichotomized IMT data using mean plus one standard deviation as the cutoff level. Because the plaque prevalence and IMT values displayed a notable difference between men and women, we carried out sex-specific analyses in addition to analyzing the overall data. Rs702553 at the PDE4D gene was selected because it conferred a risk for young stroke in our previous report. Previous young stroke data (190 cases and 211 controls) with an additional 532 control subjects without ultrasonic data were shown as a cross-validation for the genetic effect.</p> <p>Results</p> <p>In the overall analyses, the rare homozygote of rs702553 led to an OR of 3.1 (p = 0.034) for a plaque index ≥ 4. When subjects were stratified by sex, the genetic effect was only evident in men but not in women. Comparing male subjects with plaque index ≥ 4 and those with plaque index = 0, the TT genotype was over-represented (27.6% vs. 13.4%, p = 0.008). For dichotomized IMT data in men, the TT genotype had an OR of 2.1 (p = 0.032) for a thicker IMT at the common carotid artery compared with the (AA + AT) genotypes. In women, neither IMT nor plaque index was associated with rs702553. Similarly, SNP rs702553 was only significant in young stroke men (OR = 1.8, p = 0.025) but not in women (p = 0.27).</p> <p>Conclusions</p> <p>The present study demonstrates a sex-differential effect of PDE4D on IMT, plaque index and stroke, which highlights its influence on various aspects of atherogenesis.</p
    corecore