134 research outputs found

    Optimization of synchronization in gradient clustered networks

    Full text link
    We consider complex clustered networks with a gradient structure, where sizes of the clusters are distributed unevenly. Such networks describe more closely actual networks in biophysical systems and in technological applications than previous models. Theoretical analysis predicts that the network synchronizability can be optimized by the strength of the gradient field but only when the gradient field points from large to small clusters. A remarkable finding is that, if the gradient field is sufficiently strong, synchronizability of the network is mainly determined by the properties of the subnetworks in the two largest clusters. These results are verified by numerical eigenvalue analysis and by direct simulation of synchronization dynamics on coupled-oscillator networks.Comment: PRE, 76, 056113 (2007

    Comparing Infrared Dirac-Born-Infeld Brane Inflation to Observations

    Full text link
    We compare the Infrared Dirac-Born-Infeld (IR DBI) brane inflation model to observations using a Bayesian analysis. The current data cannot distinguish it from the \LambdaCDM model, but is able to give interesting constraints on various microscopic parameters including the mass of the brane moduli potential, the fundamental string scale, the charge or warp factor of throats, and the number of the mobile branes. We quantify some distinctive testable predictions with stringy signatures, such as the large non-Gaussianity, and the large, but regional, running of the spectral index. These results illustrate how we may be able to probe aspects of string theory using cosmological observations.Comment: 54 pages, 13 figures. v2: non-Gaussianity constraint has been applied to the model; parameter constraints have tightened significantly, conclusions unchanged. References added; v3, minor revision, PRD versio

    Effects and Detectability of Quasi-Single Field Inflation in the Large-Scale Structure and Cosmic Microwave Background

    Full text link
    Quasi-single field inflation predicts a peculiar momentum dependence in the squeezed limit of the primordial bispectrum which smoothly interpolates between the local and equilateral models. This dependence is directly related to the mass of the isocurvatons in the theory which is determined by the supersymmetry. Therefore, in the event of detection of a non-zero primordial bispectrum, additional constraints on the parameter controlling the momentum-dependence in the squeezed limit becomes an important question. We explore the effects of these non-Gaussian initial conditions on large-scale structure and the cosmic microwave background, with particular attention to the galaxy power spectrum at large scales and scale-dependence corrections to galaxy bias. We determine the simultaneous constraints on the two parameters describing the QSF bispectrum that we can expect from upcoming large-scale structure and cosmic microwave background observations. We find that for relatively large values of the non-Gaussian amplitude parameters, but still well within current uncertainties, galaxy power spectrum measurements will be able to distinguish the QSF scenario from the predictions of the local model. A CMB likelihood analysis, as well as Fisher matrix analysis, shows that there is also a range of parameter values for which Planck data may be able distinguish between QSF models and the related local and equilateral shapes. Given the different observational weightings of the CMB and LSS results, degeneracies can be significantly reduced in a joint analysis.Comment: 27 pages, 14 figure

    Observational Signatures and Non-Gaussianities of General Single Field Inflation

    Full text link
    We perform a general study of primordial scalar non-Gaussianities in single field inflationary models in Einstein gravity. We consider models where the inflaton Lagrangian is an arbitrary function of the scalar field and its first derivative, and the sound speed is arbitrary. We find that under reasonable assumptions, the non-Gaussianity is completely determined by 5 parameters. In special limits of the parameter space, one finds distinctive ``shapes'' of the non-Gaussianity. In models with a small sound speed, several of these shapes would become potentially observable in the near future. Different limits of our formulae recover various previously known results.Comment: 53 pages, 5 figures; v3, minor revision, JCAP version; v4, numerical coefficients corrected in Appendix B, discussion on consistency condition revise

    Observational Signatures and Non-Gaussianities of General Single Field Inflation

    Get PDF
    We perform a general study of primordial scalar non-Gaussianities in single field inflationary models in Einstein gravity. We consider models where the inflaton Lagrangian is an arbitrary function of the scalar field and its first derivative, and the sound speed is arbitrary. We find that under reasonable assumptions, the non-Gaussianity is completely determined by 5 parameters. In special limits of the parameter space, one finds distinctive ``shapes'' of the non-Gaussianity. In models with a small sound speed, several of these shapes would become potentially observable in the near future. Different limits of our formulae recover various previously known results.Comment: 53 pages, 5 figures; v3, minor revision, JCAP version; v4, numerical coefficients corrected in Appendix B, discussion on consistency condition revise

    A Novel Autosomal Dominant Inclusion Body Myopathy Linked to 7q22.1-31.1

    Get PDF
    We describe a novel autosomal dominant hereditary inclusion body myopathy (HIBM) that clinically mimics limb girdle muscular dystrophy in a Chinese family. We performed a detailed clinical assessment of 36 individuals spanning four generations. The age of onset ranged from the 30s to the 50s. Hip girdle, neck flexion and axial muscle weakness were involved at an early stage. This disease progressed slowly, and a shoulder girdle weakness appeared later in the disease course. Muscle biopsies showed necrotic, regenerating, and rimmed vacuolated fibers as well as congophilic inclusions in some of the fibers. Electron micrograph revealed cytoplasmic inclusions of 15–21 nm filaments. A genomewide scan and haplotype analyses were performed using an Illumina Linkage-12 DNA Analysis Kit (average spacing 0.58 cM), which traced the disease to a new locus on chromosome 7q22.1–31.1 with a maximum multi-point LOD score of 3.65. The critical locus for this unique disorder, which is currently referred to as hereditary inclusion body myopathy 4 (HIBM4), spans 8.78 Mb and contains 65 genes. This localization raises the possibility that one of the genes clustered within this region may be involved in this disorder

    Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes glioblastoma cells to radiotherapy and temozolomide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expression of neuronal elements has been identified in various glial tumors, and glioblastomas (GBMs) with neuronal differentiation patterns have reportedly been associated with longer survival. However, the neuronal class III β-tubulin has been linked to increasing malignancy in astrocytomas. Thus, the significance of neuronal markers in gliomas is not established.</p> <p>Methods</p> <p>The expressions of class III β-tubulin, neurofilament protein (NFP), microtubule-associated protein 2 (MAP2) and neuron-specific enolase (NSE) were investigated in five GBM cell lines and two GBM biopsies with immunocytochemistry and Western blot. Moreover, the expression levels were quantified by real-time qPCR under different culture conditions. Following NSE siRNA treatment we used Electric cell-substrate impedance sensing (ECIS) to monitor cell growth and migration and MTS assays to study viability after irradiation and temozolomide treatment. Finally, we quantitated NSE expression in a series of human glioma biopsies with immunohistochemistry using a morphometry software, and collected survival data for the corresponding patients. The biopsies were then grouped according to expression in two halves which were compared by survival analysis.</p> <p>Results</p> <p>Immunocytochemistry and Western blotting showed that all markers except NFP were expressed both in GBM cell lines and biopsies. Notably, qPCR demonstrated that NSE was upregulated in cellular stress conditions, such as serum-starvation and hypoxia, while we found no uniform pattern for the other markers. NSE knockdown reduced the migration of glioma cells, sensitized them to hypoxia, radio- and chemotherapy. Furthermore, we found that GBM patients in the group with the highest NSE expression lived significantly shorter than patients in the low-expression group.</p> <p>Conclusions</p> <p>Neuronal markers are aberrantly expressed in human GBMs, and NSE is consistently upregulated in different cellular stress conditions. Knockdown of NSE reduces the migration of GBM cells and sensitizes them to hypoxia, radiotherapy and chemotherapy. In addition, GBM patients with high NSE expression had significantly shorter survival than patients with low NSE expression. Collectively, these data suggest a role for NSE in the adaption to cellular stress, such as during treatment.</p

    Complete genome sequence of methicillin-sensitive Staphylococcus aureus containing a heterogeneic staphylococcal cassette chromosome element

    Get PDF
    Staphylococcus aureus is a common human bacterium that sometimes becomes pathogenic, causing serious infections. A key feature of S. aureus is its ability to acquire resistance to antibiotics. The presence of the staphylococcal cassette chromosome (SCC) element in serotypes of S. aureus has been confirmed using multiplex PCR assays. The SCC element is the only vector known to carry the mecA gene, which encodes methicillin resistance in S. aureus infections. Here, we report the genome sequence of a novel methicillin-sensitive S. aureus (MSSA) strain: SCC-like MSSA463. This strain was originally erroneously serotyped as methicillin-resistant S. aureus in a clinical laboratory using multiplex PCR methods. We sequenced the genome of SCC-like MSSA463 using pyrosequencing techniques and compared it with known genome sequences of other S. aureus isolates. An open reading frame (CZ049; AB037671) was identified downstream of attL and attR inverted repeat sequences. Our results suggest that a lateral gene transfer occurred between S. aureus and other organisms, partially changing S. aureus infectivity. We propose that attL and attR inverted repeats in S. aureus serve as frequent insertion sites for exogenous genes.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000316747000011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701BiologySCI(E)PubMed0ARTICLE3268-2745

    Microsurgical and tractographic anatomical study of insular and transsylvian transinsular approach

    Get PDF
    This study is to define the operative anatomy of the insula with emphasis on the transsylvian transinsular approach. The anatomy was studied in 15 brain specimens, among five were dissected by use of fiber dissection technique; diffusion tensor imaging of 10 healthy volunteers was obtained with a 1.5-T MR system. The temporal stem consists mainly of the uncinate fasciculus, inferior occipitofrontal fasciculus, Meyer’s loop of the optic radiation and anterior commissure. The transinsular approach requires an incision of the inferior limiting sulcus. In this procedure, the fibers of the temporal stem can be interrupted to various degrees. The fiber dissection technique is a very relevant and reliable method for neurosurgeons to study the details of brain anatomic features. The DTI fiber tracking technique can identify the fiber tracts of the temporal stem. Moreover, it will also help further functional study of human insula
    corecore