5,523 research outputs found
Addressing student models of energy loss in quantum tunnelling
We report on a multi-year, multi-institution study to investigate student
reasoning about energy in the context of quantum tunnelling. We use ungraded
surveys, graded examination questions, individual clinical interviews, and
multiple-choice exams to build a picture of the types of responses that
students typically give. We find that two descriptions of tunnelling through a
square barrier are particularly common. Students often state that tunnelling
particles lose energy while tunnelling. When sketching wave functions, students
also show a shift in the axis of oscillation, as if the height of the axis of
oscillation indicated the energy of the particle. We find inconsistencies
between students' conceptual, mathematical, and graphical models of quantum
tunnelling. As part of a curriculum in quantum physics, we have developed
instructional materials to help students develop a more robust and less
inconsistent picture of tunnelling, and present data suggesting that we have
succeeded in doing so.Comment: Originally submitted to the European Journal of Physics on 2005 Feb
10. Pages: 14. References: 11. Figures: 9. Tables: 1. Resubmitted May 18 with
revisions that include an appendix with the curriculum materials discussed in
the paper (4 page small group UW-style tutorial
Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels
Achieving optimal program performance requires deep insight into the
interaction between hardware and software. For software developers without an
in-depth background in computer architecture, understanding and fully utilizing
modern architectures is close to impossible. Analytic loop performance modeling
is a useful way to understand the relevant bottlenecks of code execution based
on simple machine models. The Roofline Model and the Execution-Cache-Memory
(ECM) model are proven approaches to performance modeling of loop nests. In
comparison to the Roofline model, the ECM model can also describes the
single-core performance and saturation behavior on a multicore chip. We give an
introduction to the Roofline and ECM models, and to stencil performance
modeling using layer conditions (LC). We then present Kerncraft, a tool that
can automatically construct Roofline and ECM models for loop nests by
performing the required code, data transfer, and LC analysis. The layer
condition analysis allows to predict optimal spatial blocking factors for loop
nests. Together with the models it enables an ab-initio estimate of the
potential benefits of loop blocking optimizations and of useful block sizes. In
cases where LC analysis is not easily possible, Kerncraft supports a cache
simulator as a fallback option. Using a 25-point long-range stencil we
demonstrate the usefulness and predictive power of the Kerncraft tool.Comment: 22 pages, 5 figure
A new transoceanic invasion? First records of <i>Neomysis americana</i> (Crustacea: Mysidae) in the East Atlantic
First records in the East Atlantic are reported for the North-West Atlantic endemic mysid Neomysis americana (S. I. Smith, 1873), previously known as an invader of South-West Atlantic coasts. Two specimens were caught in 2010 in coastal waters of The Netherlands. The new records provide the first evidence for a west to east transfer of a mysid species across the Atlantic, whereas previously published transfers were observed only in the opposite direction. Major diagnostic characters are reconsidered and the validity of the European species of Neomysis and Acanthomysis is discussed. A pictorial key to these species is given to facilitate future assessments of potential range expansions of N. americana
Probabilistic Cloning of Coherent States without a Phase Reference
We present a probabilistic cloning scheme operating independently of any
phase reference. The scheme is based solely on a phase-randomized displacement
and photon counting, omitting the need for non-classical resources and
non-linear materials. In an experimental implementation, we employ the scheme
to clone coherent states from a phase covariant alphabet and demonstrate that
the cloner is capable of outperforming the hitherto best-performing
deterministic scheme. An analysis of the covariances between the output states
shows that uncorrelated clones can be approached asymptotically. An intriguing
feature is that the trade-off between success rate and achieved fidelity can be
optimized even after the cloning procedure
Finite-size critical scaling in Ising spin glasses in the mean-field regime
We study in Ising spin glasses the finite-size effects near the spin-glass
transition in zero field and at the de Almeida-Thouless transition in a field
by Monte Carlo methods and by analytical approximations. In zero field, the
finite-size scaling function associated with the spin-glass susceptibility of
the Sherrington-Kirkpatrick mean-field spin-glass model is of the same form as
that of one-dimensional spin-glass models with power-law long-range
interactions in the regime where they can be a proxy for the Edwards-Anderson
short-range spin-glass model above the upper critical dimension. We also
calculate a simple analytical approximation for the spin-glass susceptibility
crossover function. The behavior of the spin-glass susceptibility near the de
Almeida-Thouless transition line has also been studied, but here we have only
been able to obtain analytically its behavior in the asymptotic limit above and
below the transition. We have also simulated the one-dimensional system in a
field in the non-mean-field regime to illustrate that when the Imry-Ma droplet
length scale exceeds the system size one can then be erroneously lead to
conclude that there is a de Almeida-Thouless transition even though it is
absent.Comment: 10 pages, 7 figure
Using resource graphs to represent conceptual change
We introduce resource graphs, a representation of linked ideas used when
reasoning about specific contexts in physics. Our model is consistent with
previous descriptions of resources and coordination classes. It can represent
mesoscopic scales that are neither knowledge-in-pieces or large-scale concepts.
We use resource graphs to describe several forms of conceptual change:
incremental, cascade, wholesale, and dual construction. For each, we give
evidence from the physics education research literature to show examples of
each form of conceptual change. Where possible, we compare our representation
to models used by other researchers. Building on our representation, we
introduce a new form of conceptual change, differentiation, and suggest several
experimental studies that would help understand the differences between
reform-based curricula.Comment: 27 pages, 14 figures, no tables. Submitted for publication to the
Physical Review Special Topics Physics Education Research on March 8, 200
Self-Diffusion of a Polymer Chain in a Melt
Self-diffusion of a polymer chain in a melt is studied by Monte Carlo
simulations of the bond fluctuation model, where only the excluded volume
interaction is taken into account. Polymer chains, each of which consists of
segments, are located on an simple cubic lattice
under periodic boundary conditions, where each segment occupies unit cells. The results for
and 512 at the volume fraction are reported, where
for and L=192 for . The -dependence of the
self-diffusion constant is examined. Here, is estimated from the mean
square displacements of the center of mass of a single polymer chain at the
times larger than the longest relaxation time. From the data for , 384
and 512, the apparent exponent , which describes the apparent power
law dependence of on as , is estimated as
. The ratio seems to be a
constant for and 512, where and
denote the longest relaxation time and the mean square end-to-end distance,
respectively.Comment: 4 pages, 3 figures, submitted to J. Phys. Soc. Jp
Solving the Einstein-Podolsky-Rosen puzzle: the origin of non-locality in Aspect-type experiments
So far no mechanism is known, which could connect the two measurements in an
Aspect-type experiment. Here, we suggest such a mechanism, based on the phase
of a photon's field during propagation. We show that two polarization
measurements are correlated, even if no signal passes from one point of
measurement to the other. The non-local connection of a photon pair is the
result of its origin at a common source, where the two fields acquire a well
defined phase difference. Therefore, it is not actually a non-local effect in
any conventional sense. We expect that the model and the detailed analysis it
allows will have a major impact on quantum cryptography and quantum
computation.Comment: 5 pages 1 figure. Added an analysis of quantum steering. The result
is that under certain conditions the experimental result at B can be
predicted if the polarization angle and the result at A are known. The paper
has been accepted for publication in Frontiers of Physics. arXiv admin note:
substantial text overlap with arXiv:1108.435
Combining 2-m temperature nowcasting and short range ensemble forecasting
During recent years, numerical ensemble prediction systems have become an important tool for estimating the uncertainties of dynamical and physical processes as represented in numerical weather models. The latest generation of limited area ensemble prediction systems (LAM-EPSs) allows for probabilistic forecasts at high resolution in both space and time. However, these systems still suffer from systematic deficiencies. Especially for nowcasting (0–6 h) applications the ensemble spread is smaller than the actual forecast error. This paper tries to generate probabilistic short range 2-m temperature forecasts by combining a state-of-the-art nowcasting method and a limited area ensemble system, and compares the results with statistical methods. The Integrated Nowcasting Through Comprehensive Analysis (INCA) system, which has been in operation at the Central Institute for Meteorology and Geodynamics (ZAMG) since 2006 (Haiden et al., 2011), provides short range deterministic forecasts at high temporal (15 min–60 min) and spatial (1 km) resolution. An INCA Ensemble (INCA-EPS) of 2-m temperature forecasts is constructed by applying a dynamical approach, a statistical approach, and a combined dynamic-statistical method. The dynamical method takes uncertainty information (i.e. ensemble variance) from the operational limited area ensemble system ALADIN-LAEF (Aire Limitée Adaptation Dynamique Développement InterNational Limited Area Ensemble Forecasting) which is running operationally at ZAMG (Wang et al., 2011). The purely statistical method assumes a well-calibrated spread-skill relation and applies ensemble spread according to the skill of the INCA forecast of the most recent past. The combined dynamic-statistical approach adapts the ensemble variance gained from ALADIN-LAEF with non-homogeneous Gaussian regression (NGR) which yields a statistical mbox{correction} of the first and second moment (mean bias and dispersion) for Gaussian distributed continuous variables. Validation results indicate that all three methods produce sharp and reliable probabilistic 2-m temperature forecasts. However, the statistical and combined dynamic-statistical methods slightly outperform the pure dynamical approach, mainly due to the under-dispersive behavior of ALADIN-LAEF outside the nowcasting range. The training length does not have a pronounced impact on forecast skill, but a spread re-scaling improves the forecast skill substantially. Refinements of the statistical methods yield a slight further improvement
- …
