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We study in Ising spin glasses the finite-size effects near the spin-glass transition in zero field and at the
de Almeida-Thouless transition in a field by Monte Carlo methods and by analytical approximations. In zero
field, the finite-size scaling function associated with the spin-glass susceptibility of the Sherrington-Kirkpatrick
mean-field spin-glass model is of the same form as that of one-dimensional spin-glass models with power-law
long-range interactions in the regime where they can be a proxy for the Edwards-Anderson short-range spin-
glass model above the upper critical dimension. We also calculate a simple analytical approximation for the
spin-glass susceptibility crossover function. The behavior of the spin-glass susceptibility near the de Almeida-
Thouless transition line has also been studied, but here we have only been able to obtain analytically its behavior
in the asymptotic limit above and below the transition. We have also simulated the one-dimensional system in a
field in the non-mean-field regime to illustrate that when the Imry-Ma droplet length scale exceeds the system
size one can then be erroneously lead to conclude that there is a de Almeida-Thouless transition even though it
is absent.

PACS numbers: 75.10.Nr, 75.40.Cx, 05.50.+q, 75.50.Lk

I. INTRODUCTION

The nature of the ordered state of spin glasses remains con-
troversial, despite decades of research. There are competing
theories for the order parameter of the low-temperature phase.
The oldest is based on the broken replica symmetry (RSB)
theory of Parisi and co-workers [1–5], which gives the correct
solution of the spin-glass problem in infinite space dimensions
(mean-field regime), that is, for the Sherrington-Kirkpatrick
(SK) model [6]. Alternative theories based on scaling argu-
ments include the droplet model [7–11]. There are also theo-
ries based on rigorous calculations [12–17] which attempt to
describe the behavior of these complex and poorly-understood
systems, yet contradict the mean-field picture of Parisi. Re-
cently, it has been argued that the RSB picture applies in space
dimensions d > 6, while the droplet picture holds for d ≤ 6
[18, 19]. That 6 might be the special dimension down to which
RSB might be applicable has been rigorously established for
a particular extreme choice of the spin-spin interactions [20].

The thrust of the argument brought forward in Ref. 18 con-
cerns the phase transition which would take place in spin
glasses in an external field if there were RSB—the so-called
de Almeida-Thouless (AT) transition [21]. Furthermore, it
was argued in Ref. 18 that when d > 6 the AT transition
line is mean-field like so that du = 6 is the upper critical di-
mension. In renormalization group (RG) language this means
its critical behavior is controlled by a Gaussian fixed point.
This point of view is supported by the work of Castellana and
Barbieri [22], who obtained an equivalent result for a Dyson
model on a hierarchical lattice. However, the arguments of
Ref. 18 and 22 were based on perturbative results and it has

been recently suggested [23] that there might be a new non-
Gaussian fixed point controlling the behavior in a field in high
space dimension. In addition, Castellana and Parisi [24] fur-
ther suggested on the basis of a numerical study of the Dyson
hierarchical model that a nonperturbative fixed point might
also be controlling the critical regime in the parameter range
which corresponds to d ≤ 6. We decided therefore to reex-
amine previously-published Monte Carlo data in search of the
nonpertubative fixed points. Based on our analysis, we con-
clude that at least for d > 6 there is strong evidence that the
critical behavior both in a field and in zero field is controlled
by the trivial Gaussian fixed point. In addition, in Sec. VI
below we argue that finite-size effects will always make it dif-
ficult when d → 6− to judge whether there is or is not an AT
line.

Monte Carlo simulations have of course been extensively
used in an attempt to understand the nature of spin glasses.
Unfortunately in spin glasses, even these state-of-the-art sim-
ulations are often plagued by strong finite-size effects. In this
paper we study in detail the form which finite-size scaling
(FSS) takes as this yields useful information as to whether for
d > 6 a nonperturbative fixed point or a Gaussian fixed point
is controlling the critical behavior.

The paper is structured as follows. In Sec. II we intro-
duce the models studied, as well as the measured observables
and scaling functions. In Sec. III we study the universality of
the finite-size scaling function for the one-dimensional model
with σ < 2/3 [25, 26], followed by a calculation of the scal-
ing function in Sec. IV. Sections V and VI show results for
finite-size scaling at the AT transition, above and below the
upper critical dimension, respectively.
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II. MODEL, OBSERVABLES AND SCALING FUNCTIONS

In practice, it is difficult to perform finite-size scaling stud-
ies on large spin-glass systems when d > 6 because the num-
ber of sites in a system of linear dimension L increases very
rapidly, as Ld, so that the range of L which can be studied
is extremely limited. However, it has been realized for some
years now that a class of models in one dimension with long-
range interactions falling off with a power of the distance be-
tween the spins can serve as a useful proxy for short-range
models in high dimension [25–27]. The Hamiltonian of these
power-law long-range models is given by

H = −
∑
ij

JijSiSj −
∑
i

hiSi, (1)

where the sites i = 1, · · · , N lie on a one-dimensional ring to
automatically enforce periodic boundary conditions. The sum
is over all pairs of sites and the Ising spins Si ∈ {±1} interact
via random couplings Jij . The latter are independent random
variables of the form

Jij = εij/R
σ
ij , (2)

where εij is a random Gaussian variable with zero mean. It
is convenient to take the distance between spin i and spin j,
Rij , to be the chord distance between sites i and j, so that
Rij = (N/π) sin(π|i − j|/N). The variance of εij is fixed
so that (1/N)

∑
i,j J

2
ij = 1. The fields hi are drawn from a

Gaussian distribution with zero mean and variance H2. We
shall refer to the case when all the hi = 0 as the zero-field
case. Most of our simulational data have been obtained for this
one-dimensional proxy for the d dimensional system in previ-
ous numerical studies [26, 28–30]. Some of our data have
also been obtained for diluted versions of the models [31, 32],
where an average coordination number zb = 6 is chosen. De-
tails of these diluted models are also to be found in Refs. 27
and 33.

For σ = 0, this model is the Sherrington-Kirkpatrick (SK)
model [6], and for 0 < σ < 1/2 it shares the SK universality
class [26, 34]. With our normalization of the bonds, Tc = 1
for all σ < 1/2 when the field H = 0. Increasing σ above
1/2 is thought to be analogous to changing an effective space
dimension d of a corresponding short-range model. In the
mean-field regime (d > du = 6) the connection between σ
and the equivalent space dimension d is given by [26, 27, 35,
36]

d =
2

2σ − 1
. (3)

According to Eq. (3) our data for the case σ = 0.55 therefore
corresponds to working in an effective space dimension d =
20.

We measure the wave-vector-dependent spin-glass suscep-
tibility defined by

χSG(k) =
1

L

∑
i,j

[(
〈SiSj〉−〈Si〉〈Sj〉

)2]
av

eik (i−j). (4)

Note that we shall usually simply call χSG(0) the spin-glass
susceptibility χSG. In Eq. (4) 〈· · · 〉 represents a thermal aver-
age, whereas [· · · ]av represents an average over the disorder.
The finite-size two-point correlation length ξL in a system of
linear dimension L is given by [33, 37, 38]

ξL =
1

2 sin(km/2)

[
χSG(0)

χSG(km)
− 1

]1/(2σ−1)
. (5)

where km = 2π/L is the smallest nonzero wave vector com-
patible with the periodic boundary conditions. Note that for
the one-dimensional model, L = N , as d = 1, i.e., the lin-
ear size of the system is the same as the number of spins N .
These two quantities, χSG and ξL, are commonly studied in
the spin-glass literature, and it is the form of finite-size effects
on these quantities which is the subject of this paper.

The scaling form presented in Refs. [34, 39, 40] is differ-
ent depending on whether behavior is being controlled by a
Gaussian fixed point or a nontrivial fixed point. For example,
if there is a nontrivial fixed point controlling the critical be-
havior, the FSS form of the correlation length ξL in a system
of Ld spins takes the form

ξL/L = ξ̃
[
(T − Tc)L1/ν

]
, (6)

where the exponent ν is the exponent which describes the
growth of the correlation length in the infinite system, where
ξ ∼ 1/(T − Tc)

ν , and ξ̃ is the finite-size scaling function.
However, when the critical behavior is controlled by the Gaus-
sian fixed point, i.e., when one is above the upper critical di-
mension, du = 6 [41], ξL scales as

ξL/L
d/du = ξ̃

[
(T − Tc)L2d/du

]
. (7)

Thus, by finding which kind of FSS scaling works best, one
can determine the nature of the fixed point which controls the
critical behavior.

To apply Eq. (7) to the one-dimensional proxy model, we
use Eq. (3) for d on the left of Eq. (7), and on the right side
of the equation, we set Ld = L ≡ N for d = 1 [34, 40].
Equation (7) therefore becomes for σ = 0.55

ξL/L
1/[3(2σ−1)] → ξL/L

10/3 = ξ̃
[
(T − Tc)L1/3

]
. (8)

Figure 1 shows the two scaling forms based on critical
scaling [Eq. (6)] and the mean-field scaling form expected
above the upper critical dimension [Eq. (8)]. We had expected
that the crossing of the curves for different L values would
have been superior for the mean-field scaling form, but this is
clearly not the case for the studied system sizes. A similar be-
havior when searching for the AT line was found by Angelini
and Biroli in Ref. 23 and they suggested as a consequence that
du might not be 6 for spin glasses in a field and that the critical
behavior for d > 6 might not be controlled by the Gaussian
fixed point but by some (as yet) undetermined nonperturbative
fixed point.

If one believes in the conventional wisdom that 6 is the up-
per critical dimension both in zero field and for the AT, then
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FIG. 1: (Color online) (a) Critical scaling form ξL/L vs temperature
T for the fully connected (complete) system with σ = 0.55 in zero
random field H . (b) Mean-field scaling form ξL/L vs temperature
T for the fully connected (complete) system with σ = 0.55 in zero
random field H .

the only possible explanation for the poor mean-field scaling
is large corrections to scaling in Fig. 1. On this explanation, if
one could obtain data for much larger systems than L = 512,
then the crossing with mean-field scaling would eventually
become better than that for critical scaling. We cannot ob-
tain such data for the fully connected system, but we can for
the diluted model and the results for the two kinds of scaling
functions are shown in Fig. 2.

There is some evidence that the crossing is indeed improv-
ing for the mean-field scaling in these larger systems, but one
could not really argue that it is superior to the critical scaling
form. Hence, using these simple scaling plots we are unable to
provide strong evidence for du = 6. Instead, we have to resort
to an alternate approach to show that mean-field scaling is the
correct description of the critical behavior. Our approach is to
analytically determine the scaling function ξ̃

[
(T − Tc)L1/3

]
and show that the simulational data fits well to this analyti-
cally calculated form. We find that it is possible to do this in
zero field and we believe that this is good evidence for the va-
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FIG. 2: (Color online) (a) Critical scaling form ξL/L vs temperature
T for the diluted model with σ = 0.55 in zero random field H .
(b) Mean-field scaling form ξL/L vs temperature T for the diluted
model with σ = 0.55 in zero random field H .

lidity of mean-field scaling. In a field, finite-size effects are
even larger in numerical work and on the analytical side we
have only been able to extract the asymptotic forms for the
scaling functions.

Rather than study the scaling function ξ̃, it is simpler to
study the equivalent scaling function for the spin-glass sus-
ceptibility χSG(0) obtained from the second moment of the
spin-glass order parameter q where

q =
1

N

∑
i

S
(1)
i S

(2)
i . (9)

Here “(1)” and “(2)” refer to two independent copies of the
system with the same interactions Jij . We have studied in
particular the second moment q2 = [〈q2〉]av and the quantity

χSG = N [〈q2〉]av (10)

which is the spin-glass susceptibility in zero field. (Note that
in a finite system in zero field 〈Si〉 = 0.) The analog of the
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FIG. 3: (Color online) (a) Critical scaling form of the susceptibility
χ/L2σ−1 vs temperature T for the fully connected (complete) sys-
tem with σ = 0.55 when the random field H = 0. (b) Mean-field
scaling form χ/L1/3 of the susceptibility χ/L2σ−1 vs temperature
T for the fully connected (complete) system with σ = 0.55 when the
random field H = 0. Note that χ ≡ χSG.

mean-field scaling form in Eq. (8) is [34]

χSG/L
1/3 = χ̃

[
(T − Tc)L1/3

]
. (11)

The analog of the critical scaling of Eq. (6) is [34]

χSG/L
2−η = χ̃

[
(T − Tc)L1/ν

]
, (12)

where 2 − η = 2σ − 1. Again, χ̃(x) denotes the scaling
function, which will also be called f(x). The advantage of
studying χSG rather than ξL is that we can study it in the SK
universality class where σ < 1/2, whereas ξL is ill-defined
for these values of σ. The crossing of χSG/L

1/3 when plotted
against the temperature T for various values of the system size
L were studied in Ref. 34 for σ = 0 and 0.25. For σ = 0.55
we present in Fig. 3 the corresponding scaling plots.

Notice that in the case of the susceptibility the quality of
the crossing is comparable for both the mean-field and critical

scaling, whereas for the correlation length the critical scaling
form seemed superior, at least for the fully connected system.
However, the temperature at which the curves cross provides
an estimate of Tc, and for both χSG and ξL critical scaling is
indicating a Tc > 1, whereas mean-field scaling indicates a
Tc < 1. At the level of mean-field theory the transition tem-
perature would be Tc = 1, and the fluctuations about the mean
field normally reduce the value of the critical temperature Tc.
This clearly is an argument in favor of using the mean-field
scaling form. The same observation can be made for the di-
luted model. For it the mean-field transition temperature is
2.0564 [34], and the estimate of Tc in Fig. 2 for the case of
σ = 0.55 is certainly less than this number using mean-field
scaling, but larger than this for the critical scaling form.

Standard finite-size scaling for mean-field scaling takes the
form [34]

χSG(T, L) = L1/3
[
f(L1/3t) + L−ωg(L1/3t) + · · ·

]
+ d0L

2σ−1h(L1/3t) + c0 + c1t+ · · · , (13)

where t = T/Tc − 1, and the correction-to-scaling exponent
is ω = 2− 3σ [25]. In the limit L→∞ with L1/3t fixed, this
equation reduces to the simpler form

χSG/L
1/3 = f(L1/3t) (14)

as then the corrections to scaling become negligible. In what
follows, we shall refer to the limit with x = L1/3t fixed as
“L → ∞” as the finite-size scaling limit, and “f(x)” as the
finite-size scaling function for χSG/L

1/3.
In Sec. III we outline the Brézin and Zinn-Justin procedure

[42] for calculating the universal scaling function f(x) for any
space dimension d > du = 6 (or σ < 2/3) and show that our
simulational data at σ = 0.0, 0.25, and 0.55 are consistent
with being in the same universality class. In Sec. IV we deter-
mine f(x) by using the mean-field equations of Thouless, An-
derson and Palmer (TAP) [43], as modified by Plefka (TAPP)
[44]. We shall use in Sec. V these same equations to determine
the analog of the scaling function f(x) at the AT transition in
nonzero field, however only in the limit of large x. Finally,
in Sec. VI we discuss finite-size problems which might make
one believe there is an AT line for d ≤ 6 (σ ≥ 2/3) even
though it is absent.

III. UNIVERSALITY OF THE FINITE-SIZE SCALING
FUNCTION FOR σ < 2/3

If the critical behavior is controlled by the Gaussian fixed
point, Brézin and Zinn-Justin [42] showed how the finite-size
scaling function f(x) can, in principle, be calculated. The
procedure basically reduces to calculating the integral

Zn =

∫
dQαβ exp [−F [{Qαβ}]/kT ] , (15)
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where

F [{Qαβ}]/kT =

∫
ddx

1

2
r
∑
α<β

Q2
αβ

+
w

6

∑
α<β<γ

QαβQβγQγα +O(Q4)

 . (16)

The coefficient r is essentially a measure of the distance from
Tc, i.e., it is related to the reduced temperature t. The Q4

terms are irrelevant when calculating the scaling function, as
are the usual density gradient terms (∇Qαβ)2 seen in such
free-energy functionals [41], although they would have been
needed if we had tried to calculate the scaling function associ-
ated with ξL. Qαβ is related to the spin-glass order parameter,
and α takes the values 1, 2, · · · , n, with n → 0. This inte-
gral should be adequate for calculating the crossover scaling
function f(x) in the mean-field scaling regime, i.e., for all
σ < 2/3. The form of the function is universal, and the dif-
ferences between fully connected spins or the diluted version
of the model, or the value of σ, just feed into the value of
Tc, the overall amplitude of χSG/L

1/3, and a multiplicative
factor associated with t. For σ > 2/3, when the behavior is
not controlled by the Gaussian fixed point but instead by the
critical fixed point [41], the calculation of the scaling function
is more complicated. Its argument changes to L1/νt and the
scaling function is different from the universal form expected
to apply for all σ < 2/3.

In Fig. 4 we plot results for χSG/N
1/3 vs the scaling vari-

able x = (T/Tc − 1)N1/3 for σ = 0.0, 0.25, and 0.55 for
both the fully connected (complete) model and for the diluted
model. The points include data for all the system sizesN sim-
ulated (see caption). In the range 1 > x > −3 there is a fairly
satisfactory collapse of the data onto a single curve for the dif-
fering values of σ and for both the fully connected and dilute
models. None of the data have been linearly scaled on either
the horizontal or vertical axes of the figure, which would have
been permissible while staying in the same universality class.
The data for x > 1 are strongly affected by finite-size effects,
some of which can be seen in Fig. 5, which is why in Fig. 4
we have limited the horizontal range to x < 1.

Overall the data are consistent with a universal scaling func-
tion f(x) for σ < 2/3. If the behavior were controlled by a
nonperturbative fixed point rather than by the Gaussian fixed
point, then such universality of f(x) would have to be under-
stood. Furthermore, as we shall see in Sec. IV below, it is
possible to calculate the function f(x) explicitly. Our results
in Fig. 5 turn out to be in satisfactory agreement with our ap-
proximation.

It is possible to determine the behavior of f(x) as x→ ±∞
by simple arguments: when x → −∞, χSG → Nq2, and as
q → −t in the scaling limit where t → 0, that means that
f(x) → x2. The data in Fig. 5 are approaching this estimate
at large negative x. For x → ∞, χSG → 1/(1 − β2) [see
Eq. (25)] for the SK model and also from the TAPP equa-
tions, which implies that f(x) → 1/(2x) as β = 1/(1 + t).
Again, the data shown in Fig. 5 seem to be approaching this
limit, but the finite-size effects are large for positive x. This
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FIG. 4: (Color online) Reduced spin-glass susceptibility χSG/N
1/3

vs x = N1/3(T/Tc−1), (recall,N ≡ L), i.e., the finite-size scaling
function f(x) in zero field for all system sizesN studied. For the SK
model (σ = 0) we simulated N = 1024, . . . , 4096. For the diluted
model and σ = 0 we studied N = 2048, . . . , 16384. For σ = 0.25
we studied N = 512, . . . , 4096 for the complete (fully connected)
model and N = 2048, . . . , 16384 for the diluted model. Data taken
from Ref. 34. For σ = 0.55 we studied N = 32, . . . , 512 for the
complete (fully connected) model and N = 128, . . . , 2048 for the
diluted model. Data taken from Refs. 26 and 27. For σ = 0.55 for
the complete (fully connected) case we have taken Tc ≈ 0.94, while
for the diluted case we use Tc ≈ 1.98. Note the vertical logarithmic
scale.
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FIG. 5: (Color online) Reduced spin-glass susceptibility χSG/N
1/3

vs x = N1/3(T/Tc − 1), i.e., the finite-size scaling function f(x)
in zero field for the SK model (σ = 0). The data are taken from
Ref. 34. For this model Tc = 1 [6]. The data for x > 1 are strongly
affected by finite-size effects. The solid curve shows our approxima-
tion based on Eq. (29) for the scaling function f(x) based on solving
the TAPP equations. It gives, at large positive x, f(x) → 1/(2x),
while at large negative x, f(x) → x2. The blue dashed curve is the
asymptotic limit f(x)→ x2 for negative x values.
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is not due to any inaccuracies in the TAPP equations, but
just points to the fact that in order to use the simplification
χSG = 1/(2t) [which leads to f(x) → 1/(2x)] one needs to
work with rather small values of t. However, at fixed large x,
this requires working with very large values of N , which are
currently not accessible numerically.

IV. CALCULATION OF THE SCALING FUNCTION f(x)

In this section we outline how one can calculate the finite-
size scaling function f(x). One approach would be to simply
do the integrals in Eq. (15). Unfortunately, that is very dif-
ficult because of the replica labels and the need to continue
n → 0. However, an approach equivalent to this was used by
three of us in Ref. 45 and it results in studying the finite-size
scaling function for the spherical SK spin-glass model, which
according to the arguments in the aforementioned reference
should have an identical scaling function f(x). However, this
approach is hard to extend to the behavior in a field, so in-
stead we present an approach which does permit, in principle,
an extension to finite fields.

Assuming that the scaling function f(x) applies for all σ <
2/3, if we can calculate it for the SK model with σ = 0 and
that agrees with data for (say) σ = 0.55—as is the case in
Fig. 4—then the assumption would seem to be correct. To
calculate f(x) for the SK model we use the TAP equations
[43] as modified by Plefka [44] and refer to them as the TAPP
equations. Plefka argued that in the presence of an external
field hi at each site i, the magnetization mi is given by

mi = tanhβ
[
hi +

∑
j

Jijmj −miχ`
]
, (17)

where the local susceptibility is given by

χ` = N−1
∑
i

χii = N−1
∑
i

∂mi/∂hi. (18)

Plefka assumed that ∂χ`/∂mi is of order O(N−1) and thus
negligible when the inverse susceptibility matrix is calculated
from Eq. (17)

χ−1ij = δij [β
−1(1−m2

i )
−1 + χ`]− Jij . (19)

Equations (17) and (19), with
∑
j χijχ

−1
jk = δik form a closed

set of equations for the mi and χ`. They are not exact, unfor-
tunately, as the terms of O(N−1) can, for certain quantities,
combine to make O(1) contributions [46]. We believe that
such possibilities are unimportant in our calculation of f(x).
Our argument for this is that the use of these equations gives
in our finite-size scaling limit the same results as can be ob-
tained by the spherical model SK spin glass mapping [45],
which we think is exact in zero field. For zero fields, in our
scaling regime, mi → 0, and Eq. (19) simplifies to

χ−1ij = δij [β
−1 + χ`]− Jij . (20)

The self-consistency equation for χ` is then conveniently writ-
ten in terms of z = β−1 + χ` as

z − β−1 = N−1
∑
i

1

z − λi
, (21)

where λi are the eigenvalues of the matrix Jij . The physical
solution is the solution which has the largest real value of z.

In the large-N limit, theN real eigenvalues λi are described
by the semicircle distribution with support between−2 and 2.
Then Eq. (21) reduces to

z − β−1 = 1 +
(z − 2)−

√
(z − 2)(z + 2)

2
, (22)

which gives z = β + β−1. We want to calculate

χSG ≡
1

β2
N−1

∑
i,j

χ2
ij

=
1

β2
N−1

∑
i

1

(z − λi)2
. (23)

In the large-N limit, the sum can be done and gives

1

2β2
· z√

z2 − 4− 1
, (24)

which reduces to

χSG →
1

1− β2
, (25)

on substituting z = β + β−1. It is this result which we use to
determine the limit of f(x) as x→∞ (see Fig. 6).

In principle, for finite N values, one could solve for z nu-
merically using Eq. (21). However, this is difficult for large
N . Instead, we give an approximate solution which seems
in practice to be quite accurate. As x → −∞, z → λmax

and throughout the scaling region differs from λmax by terms
of O(1/N2/3). The largest eigenvalue itself has the form
λmax = 2 + O(1/N2/3). Let us introduce the variable u =
(z−λmax)N2/3 > 0 and the notation ∆ = (λmax−λ1)N2/3,
where λ1 is the next largest eigenvalue. Then we separate off
the first two terms in the sum in Eq. (21) and approximate the
rest by Eq. (22) after replacing (z − 2) by (z − λmax) [45].
The left-hand side of Eq. (21) becomes

z − β−1 → 1− x/N1/3 +O(1/N2/3). (26)

The right-hand side becomes

1

N1/3u
+

1

N1/3(u+ ∆)
+1−

√
u/N2/3+O(1/N2/3). (27)

Thus, correct toO(1/N2/3),we have as our basic approxima-
tion for u,

− x =
1

u
+

1

u+ ∆
−√u. (28)

Within the same approximation, the sample with gap ∆ gives
for f(x)

f(x) =
1

u2
+

1

(u+ ∆)2
+

1

2
√
u
. (29)
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To calculate the bond-averaged value of f(x) we must aver-
age over the spacing ∆ which we do with the Wigner surmise
distribution for it [47].

Before comparing with the numerical data we need to in-
troduce the pseudocritical temperature Tc(N) [48, 49]. If one
studies the function −f ′(x)/f(x), it has a peak at Tc. How-
ever, in a system of finite sizeN , this peak is shifted to Tc(N),
where in the mean-field regime,

Tc(N) = Tc −
a

N1/3
. (30)

For the SK model Tc = 1 and typical values for a are ∼ 0.2,
but this depends on the function being studied [48]. When
trying to construct the universal scaling function f(x) for dif-
ferent models it is natural to shift the horizontal axis so that
the peaks for the different models coincide at x = 0, which
can by done by redefining x so that x = [T/Tc(N)− 1]N1/3.
This definition of x differs from the old definition by a +
O(1/N1/3). Thus, when comparing to our numerical data,
one can shift the curves by an amount a to improve the fit,
and this is what we did in Fig. 5. With this shift, the over-
all agreement is quite satisfactory, considering the simplicity
of the approximation. We suspect that it might be possible
to calculate f(x) exactly, but that remains a challenge for the
future.

V. FINITE-SIZE SCALING AT THE ALMEIDA-THOULESS
TRANSITION

In this section we shall discuss finite-size scaling at the AT
transition [21]. The upper critical dimension of the AT line
is expected to be the same as in zero field, that is, du = 6
[50]. For the long-range model, that translates to σ = 2/3.
Note that in a field 〈Si〉 is nonzero, and we have to study the
cumulant second moment, i.e.,

χSG =
1

N

∑
i,j

[
〈SiSj〉 − 〈Si〉〈Sj〉

]2
av
. (31)

In a field we only have numerical data for the one-dimensional
long-range model with σ = 0.55. In Fig. 6 we show the
mean-field scaling form χSG/N

1/3 = fH(x) against x =
N1/3[T/Tc(H)− 1]. The finite-size effects are strongly visi-
ble on the low-temperature side of the transition.

We now turn to understanding the form of the finite-size
scaling function fH(x) near the AT transition. At the formal
level, the analog of Eq. (16) for the AT transition involves
just the fields in the replicon sector Q̃αβ , which are such that∑
β Q̃αβ = 0 [50]. The replicated partition function is

Zn =

∫
dQ̃αβ exp

[
−F [{Q̃αβ}]/kT

]
, (32)

where the effective functional is

F [{Q̃αβ}]/kT =

∫
ddx

[
1

4
r̃
∑

Q̃2
αβ

+
w1

6

∑
Q̃αβQ̃βγQ̃γα +

w2

6

∑
Q̃3
αβ

]
. (33)

10−1

100

101

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

χ
S
G
/N

1
/
3

N1/3(T/Tc − 1)

N = 64
N = 128
N = 256
N = 512

FIG. 6: (Color online) Reduced spin-glass susceptibility χSG/N
1/3

vs x = N1/3[T/Tc(H) − 1], that is the finite-size scaling function
fH(x) in a random field of standard deviation 0.10 when σ = 0.55.
For this model Tc(H = 0.1) ≈ 0.815.

Here the convention has been adopted that the sums over
replica indices are unrestricted. Note that Q̃αα = 0. At the
AT line, r̃ = 0 in the mean-field approximation and the two
couplings w1 and w2 both depend on the field H . We would
expect as a consequence the finite-size scaling function fH(x)
to depend on both x and the strength of the field H . It is be-
cause the effective field theory is a cubic field theory that the
upper critical dimension du = 6 for the AT line [50]. Unfor-
tunately, the integrals in Eq. (33) needed to calculate fH(x)
are even more difficult to do than those of the zero-field case
and other methods have to be used to understand the finite-size
scaling function fH(x).

We have tried solving the TAPP equations for the SK limit
in the presence of a field numerically. We obtained the so-
lution for a given bond and field realization at high tempera-
tures, and followed the solution down to lower temperatures,
for N values up to 400. At temperatures well above Tc(H),
we obtained values for χSG consistent with those in Fig. 6.
At large positive values of x one is effectively in the regime
where one can use the locator expansion [51] on the TAPP
equations. The result [44] is that Eq. (25) is generalized to

χSG →
χ0
SG

1− β2χ0
SG

, (34)

where [52]

χ0
SG =

1

N

∑
i

(1−m2
i )

2. (35)

We stress that this result holds just for the large-N limit and
T > Tc(H). For the SK model in a random field H , χ0

SG can
be determined explicitly. At the AT transition Tc(H), χ0

SG =
Tc(H)2, and so for T close to Tc(H),

χSG →
Tc(H)2

[1− βTc(H)][1 + βTc(H)]
→ 1

2t
Tc(H)2, (36)
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where t = [T/Tc(H)−1]. ForH = 0.1, Tc(0.1) = 0.819428
for the SK model, so χSG → 0.33573/t. Unfortunately, the
data in Fig. 6 have not been obtained at large enough values of
N (here the largest N value is 512) or small enough values of
t, to see this behavior clearly. However, the calculated values
of χSG are consistent with the result presented in Eq. (34).

As the temperature is reduced to well below Tc(H), the so-
lution of the TAPP equations in the large-N limit is expected
to reduce to χSG → 1/|t| [44]. For the N values for which
we could obtain solutions, i.e., N < 400, this behavior was
not visible. In fact, most samples showed a peak in χSG well
above Tc(H), followed by a fall at lower temperatures. We
suspect that the fall at low temperatures visible in Fig. 6 might
by connected with the fall seen in the TAPP equations. The
decrease in χSG/N

1/3 at large negative x values seen in Fig. 6
is clearly a finite-size effect.

We suspect that in the absence of finite-size effects fH(x)
would actually continue to grow ∝ x2 at large negative x,
due to replica symmetry breaking effects [53], and not follow
the expectations based on the solution of the TAPP equations,
which would be that f(x) → 1/|x|. In Ref. 53 it was shown
that for the SK model, where the Parisi RSB broken order
parameter is q(x),

χSG =
N

3

{∫ 1

0

q2(x)dx−
[∫ 1

0

q(x)dx

]2}
. (37)

At large negative x one would therefore expect that because of
these replica symmetry breaking effects that fH(x) → Bx2

so that χSG is proportional to N . Using the results in Refs. 53
and 54 for q(x) in a field, one can calculate the coefficient B
and it is of order qEA on the AT line, which is small (≈ 0.2)
when H = 0.1. However, the data in Fig. 6 at negative x
values are not extensive enough to provide a clear verification
of these predictions.

VI. NUMERICAL SEARCHES FOR THE
ALMEIDA-THOULESS LINE WHEN d ≤ 6 (σ ≥ 2/3)

In Sec. I we stated that there is likely no AT line when
d ≤ 6. As a consequence, we were surprised when Castellana
and Parisi [24] recently claimed that in the Dyson hierarchi-
cal model numerical evidence suggested the existence of an
AT line at σ = 0.68 > 2/3 which corresponds to an effective
space dimension d < 6. At the transition they reported values
for the critical exponents which were not close to their mean-
field values, which lead them to suggest that the behavior was
being controlled by a nonperturbative fixed point.

In this section we discuss a problem which arises when try-
ing to determine the existence of the AT line in dimensions
where there might be no AT line. It is again a finite-size prob-
lem. If there is no AT line and the droplet picture applies, then
the correlation length ξD in the system is the Imry-Ma length
[55], determined by equating the free energy cost of flipping a
region of size ξD, kTc(ξD/ξ)θ to the energy which might be
gained from the random applied field, which is

√
qHξ

d/2
D (see

10−4

10−3

10−2

10−1

100

101

102

10−1 100 101
10−4

10−3

10−2

10−1

100

101

102

10−1 100 101

ξ/
L

H

ξ/
L

H

FIG. 7: (Color online) Correlation length ξL/L over a large range of
field values for L = 1024, T = 0.48, and σ = 0.75. The horizontal
dashed line is a guide to the eye marking the point where ξL = L.
A change in behavior for ξ < L is apparent. The solid (blue) line
marks the regime where the Imry-Ma argument [55] is valid.

for example, Ref. 56). Here ξ denotes the zero-field correla-
tion length∼ 1/|t|ν . In our one-dimensional model, θ = 1−σ
[57]. Then

ξD
ξ
∼
[
HAT

H

]2/(2σ−1)
, (38)

where

HAT ≡ kTc|t|(γ+β)/2, (39)

which is the scaling expectation for the form of the AT line
[56], should it exist. At the borderline value of σ = 2/3, ξD
grows rapidly for small fields∝ 1/H6. In order to see droplet
behavior one requires system sizes L > ξD. Otherwise, one
might be tempted to think there is an AT line. For σ = 0.75
we plot ξL/L as a function of the field H in Fig. 7. Here, ξD
grows at small H ∝ 1/H4. Figure 7 shows that the droplet
model prediction that ξL ∼ ξD fails when ξL > L, as then
finite-size effects are clearly making ξL deviate away from
ξD. The basic message is that to see droplet model behavior
one needs to study system sizes L > ξD. When studying
fields where ξD > L, one can be misled into thinking there is
evidence for an AT line, as discussed at great length in Ref. 33.
We suspect this is why the authors of Ref. 24 thought there
was an AT line at σ = 0.68. In fact, the growth of ξD as
1/H6 when σ → 2/3+ will always make it very difficult to
obtain data for the regime where L > ξD.

VII. CONCLUSIONS

We have studied finite-size effects on critical scaling in
Ising spin glasses both in zero field and finite field in the
regime where mean-field scaling is expected. We believe that
the conventional wisdom that both types of transition have 6
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as the upper critical dimension is supported by the numeri-
cal data gathered from previous studies, even though strong
finite-size effects are present. For the zero-field case, we have
found a simple approximation for the crossover function for
the spin-glass susceptibility. The finite-field case is far more
difficult, but we have been able to determine the asymptotic
form of the crossover function by allowing for the non-self-
averaging features of the Parisi order parameter q(x) which
occur below the AT transition.

We should point out that there is a lack of self averaging
generally throughout the critical scaling regime. Thus, in zero
field, we have studied in the SK limit the distribution function
of χSG at T = Tc which arises from different realizations of
the bonds Jij that has a well-defined distribution. The zero-
field problem seems sufficiently simple such that one day the
scaling function f(x) might be determined analytically; as a
by-product one might then obtain the corresponding distribu-
tion functions.

We have argued previously that evidence for an AT line
when d < 6 might be just a consequence of not allowing for
the effects of finite-size effects. In order to see the droplet
picture emerging clearly, one needs the linear system size L
to be larger than the Imry-Ma length ξD. However, this length
scale can be very long at the fields commonly used in most
numerical studies. This means that when L ≤ ξD one can
easily be mislead into believing that there is a transition in
a field. For example, from the data presented in Fig. 7 for
the one-dimensional model with σ = 0.75, one needs system
sizes L larger than 1024 sites, as well as fields stronger than
HR ≈ 0.7 to see the droplet behavior. Our hope is that future
studies first verify the needed system sizes L > ξD before
claiming the existence of a spin-glass state in a field.
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