31 research outputs found

    Prolastin, a pharmaceutical preparation of purified human α1-antitrypsin, blocks endotoxin-mediated cytokine release

    Get PDF
    BACKGROUND: α1-antitrypsin (AAT) serves primarily as an inhibitor of the elastin degrading proteases, neutrophil elastase and proteinase 3. There is ample clinical evidence that inherited severe AAT deficiency predisposes to chronic obstructive pulmonary disease. Augmentation therapy for AAT deficiency has been available for many years, but to date no sufficient data exist to demonstrate its efficacy. There is increasing evidence that AAT is able to exert effects other than protease inhibition. We investigated whether Prolastin, a preparation of purified pooled human AAT used for augmentation therapy, exhibits anti-bacterial effects. METHODS: Human monocytes and neutrophils were isolated from buffy coats or whole peripheral blood by the Ficoll-Hypaque procedure. Cells were stimulated with lipopolysaccharide (LPS) or zymosan, either alone or in combination with Prolastin, native AAT or polymerised AAT for 18 h, and analysed to determine the release of TNFα, IL-1β and IL-8. At 2-week intervals, seven subjects were submitted to a nasal challenge with sterile saline, LPS (25 μg) and LPS-Prolastin combination. The concentration of IL-8 was analysed in nasal lavages performed before, and 2, 6 and 24 h after the challenge. RESULTS: In vitro, Prolastin showed a concentration-dependent (0.5 to 16 mg/ml) inhibition of endotoxin-stimulated TNFα and IL-1β release from monocytes and IL-8 release from neutrophils. At 8 and 16 mg/ml the inhibitory effects of Prolastin appeared to be maximal for neutrophil IL-8 release (5.3-fold, p < 0.001 compared to zymosan treated cells) and monocyte TNFα and IL-1β release (10.7- and 7.3-fold, p < 0.001, respectively, compared to LPS treated cells). Furthermore, Prolastin (2.5 mg per nostril) significantly inhibited nasal IL-8 release in response to pure LPS challenge. CONCLUSION: Our data demonstrate for the first time that Prolastin inhibits bacterial endotoxin-induced pro-inflammatory responses in vitro and in vivo, and provide scientific bases to explore new Prolastin-based therapies for individuals with inherited AAT deficiency, but also for other clinical conditions

    High Efficiency, High Density Terrestrial Panel

    No full text
    Terrestrial panels were fabricated using rectangular cells. Packing densities in excess of 90% with panel conversion efficiencies greater than 13% were obtained. Higher density panels can be produced on a cost competitive basis with the standard salami panels

    Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer

    No full text
    The primary purpose of this study was to evaluate the effect of CYP2C8*3 and three genetic ABCB1 variants on the elimination of paclitaxel. We studied 93 Caucasian women with ovarian cancer treated with paclitaxel and carboplatin. Using sparse sampling and nonlinear mixed effects modeling, the individual clearance of unbound paclitaxel was estimated from total plasma paclitaxel and Cremophor EL. The geometric mean of clearance was 385 l h(-1) (range 176-726 l h(-1)). Carriers of CYP2C8*3 had 11% lower clearance than non-carriers, P = 0.03. This has not been shown before in similar studies; the explanation is probably the advantage of using both unbound paclitaxel clearance and a population of patients of same gender. No significant association was found for the ABCB1 variants C1236T, G2677T/A and C3435T. Secondarily, other candidate single-nucleotide polymorphisms were explored with possible associations found for CYP2C8*4 (P = 0.04) and ABCC1 g.7356253C andgt; G (P = 0.04).Original Publication:T K Bergmann, C Brasch-Andersen, Henrik Green, M Mirza, R S Pedersen, F Nielsen, K Skougaard, J Wihl, N Keldsen, P Damkier, L E Friberg, Curt Peterson, W Vach, M O Karlsson and K Brosen, Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer, 2011, PHARMACOGENOMICS JOURNAL, (11), 2, 113-120.http://dx.doi.org/10.1038/tpj.2010.19Copyright: Nature Publishing Grouphttp://npg.nature.com
    corecore