4,965 research outputs found

    Untangling the Recombination Line Emission from HII Regions with Multiple Velocity Components

    Get PDF
    HII regions are the ionized spheres surrounding high-mass stars. They are ideal targets for tracing Galactic structure because they are predominantly found in spiral arms and have high luminosities at infrared and radio wavelengths. In the Green Bank Telescope HII Region Discovery Survey (GBT HRDS) we found that >30% of first Galactic quadrant HII regions have multiple hydrogen radio recombination line (RRL) velocities, which makes determining their Galactic locations and physical properties impossible. Here we make additional GBT RRL observations to determine the discrete HII region velocity for all 117 multiple-velocity sources within 18deg. < l < 65deg. The multiple-velocity sources are concentrated in the zone 22deg. < l < 32deg., coinciding with the largest regions of massive star formation, which implies that the diffuse emission is caused by leaked ionizing photons. We combine our observations with analyses of the electron temperature, molecular gas, and carbon recombination lines to determine the source velocities for 103 discrete H II regions (88% of the sample). With the source velocities known, we resolve the kinematic distance ambiguity for 47 regions, and thus determine their heliocentric distances.Comment: 44 pages, 5 figures, 16 pages of tables; Accepted by ApJ

    Progress using generalized lattice Dirac operators to parametrize the Fixed-Point QCD action

    Get PDF
    We report on an ongoing project to parametrize the Fixed-Point Dirac operator for massless quarks, using a very general construction which has arbitrarily many fermion offsets and gauge paths, the complete Clifford algebra and satisfies all required symmetries. Optimizing a specific construction with hypercubic fermion offsets, we present some preliminary results.Comment: Lattice 2000 (Improvement), 9 pages, based on a talk by K.H. and a poster by T.J. References adde

    The Green Bank Telescope H II Region Discovery Survey: IV. Helium and Carbon Recombination Lines

    Get PDF
    The Green Bank Telescope H II Region Discovery Survey (GBT HRDS) found hundreds of previously unknown Galactic regions of massive star formation by detecting hydrogen radio recombination line (RRL) emission from candidate H II region targets. Since the HRDS nebulae lie at large distances from the Sun, they are located in previously unprobed zones of the Galactic disk. Here we derive the properties of helium and carbon RRL emission from HRDS nebulae. Our target sample is the subset of the HRDS that has visible helium or carbon RRLs. This criterion gives a total of 84 velocity components (14% of the HRDS) with helium emission and 52 (9%) with carbon emission. For our highest quality sources, the average ionic He-4+/H+ abundance ratio by number, , is 0.068 +/- 0.023 (1-sigma). This is the same ratio as that measured for the sample of previously known Galactic H II regions. Nebulae without detected helium emission give robust y+ upper limits. There are 5 RRL emission components with y+ less than 0.04 and another 12 with upper limits below this value. These H II regions must have either a very low He-4 abundance or contain a significant amount of neutral helium. The HRDS has 20 nebulae with carbon RRL emission but no helium emission at its sensitivity level. There is no correlation between the carbon RRL parameters and the 8 microns mid-infrared morphology of these nebulae.Comment: Accepted to ApJ. The survey website can be found here: http://go.nrao.edu/hrd

    Diffuse Ionized Gas in the Milky Way Disk

    Get PDF
    We analyze the diffuse ionized gas (DIG) in the first Galactic quadrant from l=18deg to 40deg using radio recombination line (RRL) data from the Green Bank Telescope. These data allow us to distinguish DIG emission from HII region emission and thus study the diffuse gas essentially unaffected by confusion from discrete sources. We find that the DIG has two dominant velocity components, one centered around 100km/s associated with the luminous HII region W43, and the other centered around 45km/s not associated with any large HII region. Our analysis suggests that the two velocity components near W43 may be caused by non-circular streaming motions originating near the end of the Galactic bar. At lower Galactic longitudes, the two velocities may instead arise from gas at two distinct distances from the Sun, with the most likely distances being ~6kpc for the 100km/s component and ~12kpc for the 45km/s component. We show that the intensity of diffuse Spitzer GLIMPSE 8.0um emission caused by excitation of polyaromatic hydrocarbons (PAHs) is correlated with both the locations of discrete HII regions and the intensity of the RRL emission from the DIG. This implies that the soft ultra-violet photons responsible for creating the infrared emission have a similar origin as the harder ultra-violet photons required for the RRL emission. The 8.0um emission increases with RRL intensity but flattens out for directions with the most intense RRL emission, suggesting that PAHs are partially destroyed by the energetic radiation field at these locations.Comment: Accepted for publication in ApJ (16 pages, 11 figures, 2 tables

    High-Mass Star Formation in the Outer Scutum-Centaurus Arm

    Get PDF
    The Outer Scutum-Centaurus (OSC) spiral arm is the most distant molecular spiral arm in the Milky Way, but until recently little was known about this structure. Discovered by Dame and Thaddeus (2011), the OSC lies ∼\sim15 kpc from the Galactic Center. Due to the Galactic warp, it rises to nearly 4∘^{\circ} above the Galactic Plane in the first Galactic quadrant, leaving it unsampled by most Galactic plane surveys. Here we observe HII region candidates spatially coincident with the OSC using the Very Large Array to image radio continuum emission from 65 targets and the Green Bank Telescope to search for ammonia and water maser emission from 75 targets. This sample, drawn from the WISE Catalog of Galactic HII Regions, represents every HII region candidate near the longitude-latitude (l,v) locus of the OSC. Coupled with their characteristic mid-infrared morphologies, detection of radio continuum emission strongly suggests that a target is a bona fide HII region. Detections of associated ammonia or water maser emission allow us to derive a kinematic distance and determine if the velocity of the region is consistent with that of the OSC. Nearly 60% of the observed sources were detected in radio continuum, and over 20% have ammonia or water maser detections. The velocities of these sources mainly place them beyond the Solar orbit. These very distant high-mass stars have stellar spectral types as early as O4. We associate high-mass star formation at 2 new locations with the OSC, increasing the total number of detected HII regions in the OSC to 12.Comment: 14 pages text and tables + 10 pages supplemental figure

    Diffuse Ionized Gas in the Milky Way Disk

    Full text link
    We analyze the diffuse ionized gas (DIG) in the first Galactic quadrant from l=18deg to 40deg using radio recombination line (RRL) data from the Green Bank Telescope. These data allow us to distinguish DIG emission from HII region emission and thus study the diffuse gas essentially unaffected by confusion from discrete sources. We find that the DIG has two dominant velocity components, one centered around 100km/s associated with the luminous HII region W43, and the other centered around 45km/s not associated with any large HII region. Our analysis suggests that the two velocity components near W43 may be caused by non-circular streaming motions originating near the end of the Galactic bar. At lower Galactic longitudes, the two velocities may instead arise from gas at two distinct distances from the Sun, with the most likely distances being ~6kpc for the 100km/s component and ~12kpc for the 45km/s component. We show that the intensity of diffuse Spitzer GLIMPSE 8.0um emission caused by excitation of polyaromatic hydrocarbons (PAHs) is correlated with both the locations of discrete HII regions and the intensity of the RRL emission from the DIG. This implies that the soft ultra-violet photons responsible for creating the infrared emission have a similar origin as the harder ultra-violet photons required for the RRL emission. The 8.0um emission increases with RRL intensity but flattens out for directions with the most intense RRL emission, suggesting that PAHs are partially destroyed by the energetic radiation field at these locations.Comment: Accepted for publication in ApJ (16 pages, 11 figures, 2 tables
    • …
    corecore