32,839 research outputs found

    Solution of the dual reflection equation for An1(1)A^{(1)}_{n-1} SOS model

    Get PDF
    We obtain a diagonal solution of the dual reflection equation for elliptic An1(1)A^{(1)}_{n-1} SOS model. The isomorphism between the solutions of the reflection equation and its dual is studied.Comment: Latex file 12 pages, added reference

    Timing Features of the Accretion--driven Millisecond X-Ray Pulsar XTE J1807--294 in 2003 March Outburst

    Full text link
    In order to probe the activity of the inner disk flow and its effect on the neutron star surface emissions, we carried out the timing analysis of the Rossi X-Ray Timing Explorer (RXTE) observations of the millisecond X-ray pulsar XTE J1807--294, focusing on its correlated behaviors in X-ray intensities, hardness ratios, pulse profiles and power density spectra. The source was observed to have a serial of broad "puny" flares on a timescale of hours to days on the top of a decaying outburst in March 2003. In the flares, the spectra are softened and the pulse profiles become more sinusoidal. The frequency of kilohertz quasi-periodic oscillation (kHz QPO) is found to be positively related to the X-ray count rate in the flares. These features observed in the flares could be due to the accreting flow inhomogeneities. It is noticed that the fractional pulse amplitude increases with the flare intensities in a range of 2\sim 2%-14%, comparable to those observed in the thermonuclear bursts of the millisecond X-ray pulsar XTE J1814--338, whereas it remains at about 6.5% in the normal state. Such a significant variation of the pulse profile in the "puny" flares may reflect the changes of physical parameters in the inner disk accretion region. Furthermore, we noticed an overall positive correlation between the kHz QPO frequency and the fractional pulse amplitude, which could be the first evidence representing that the neutron-star surface emission properties are very sensitive to the disk flow inhomogeneities. This effect should be cautiously considered in the burst oscillation studies.Comment: Accepted by ApJ, 23 pages, 7 figures, 3 table

    Raman spectroscopy of epitaxial graphene on a SiC substrate

    Full text link
    The fabrication of epitaxial graphene (EG) on SiC substrate by annealing has attracted a lot of interest as it may speed up the application of graphene for future electronic devices. The interaction of EG and the SiC substrate is critical to its electronic and physical properties. In this work, Raman spectroscopy was used to study the structure of EG and its interaction with SiC substrate. All the Raman bands of EG blue shift from that of bulk graphite and graphene made by micromechanical cleavage, which was attributed to the compressive strain induced by the substrate. A model containing 13 x 13 honeycomb lattice cells of graphene on carbon nanomesh was constructed to explain the origin of strain. The lattice mismatch between graphene layer and substrate causes the compressive stress of 2.27 GPa on graphene. We also demonstrate that the electronic structures of EG grown on Si and C terminated SiC substrates are quite different. Our experimental results shed light on the interaction between graphene and SiC substrate that are critical to the future applications of EG.Comment: 20 pages, 5 figure

    The X-ray Spectral Properties and Variability of Luminous High-Redshift Active Galactic Nuclei

    Full text link
    We perform a detailed investigation of moderate-to-high quality X-ray spectra of ten of the most luminous active galactic nuclei (AGNs) known at z>4 (up to z~6.28). This study includes five new XMM observations and five archived X-ray observations (four by XMM and one by Chandra). We find that the X-ray power-law photon indices of our sample, composed of eight radio-quiet sources and two that are moderately radio loud, are not significantly different from those of lower redshift AGNs. The upper limits obtained on intrinsic neutral hydrogen column densities, N_H<~10^{22}-10^{23} cm^{-2}, indicate that these AGNs are not significantly absorbed. A joint fit performed on our eight radio-quiet sources, with a total of ~7000 photons, constrains the mean photon index of z>4 radio-quiet AGNs to Gamma=1.97^{+0.06}_{-0.04}, with no detectable intrinsic dispersion from source to source. We also obtain a strong constraint on the mean intrinsic column density, N_H<~3x10^{21} cm^{-2}, showing that optically selected radio-quiet AGNs at z>4 are, on average, not more absorbed than their lower-redshift counterparts. All this suggests that the X-ray production mechanism and the central environment in radio-quiet AGNs have not significantly evolved over cosmic time. The mean equivalent width of a putative neutral narrow Fe Ka line is constrained to be <~190 eV, and similarly we place constraints on the mean Compton reflection component (R<~1.2). None of the AGNs varied on short (~1 hr) timescales, but on longer timescales (months-to-years) strong variability is observed in four of the sources. In particular, the X-ray flux of the z=5.41 radio-quiet AGN SDSS 0231-0728 dropped by a factor of ~4 over a rest-frame period of 73 d. This is the most extreme X-ray variation observed in a luminous z>4 radio-quiet AGN.Comment: 10 pages (emulateapj), 5 figures. Accepted by Ap

    Generalized thermo vacuum state derived by the partial trace method

    Full text link
    By virtue of the technique of integration within an ordered product (IWOP) of operators we present a new approach for deriving generalized thermo vacuum state which is simpler in form that the result by using the Umezawa-Takahashi approach, in this way the thermo field dynamics can be developed. Applications of the new state are discussed.Comment: 5 pages, no figure, revtex

    Searches for Supersymmetry with the ATLAS Detector

    Full text link
    This is a review of searches for supersymmetry (SUSY) with the ATLAS detector in proton-proton collisions at a center-of-mass energy of 7 TeV at the Large Hadron Collider at CERN. The review covers results that have been published, or submitted for publication, up to September 2012, many of which cover the full 7 TeV data-taking period. No evidence for SUSY has been seen; some possibilities for future directions are discussed.Comment: 15 pages, 2 figures. Invited review article for Modern Physics Letters A. Electronic version of an article published as Mod. Phys. Lett. A, Vol. 27, No. 32 (2012) 1230033 DOI: 10.1142/S0217732312300339 copyright World Scientific Publishing Company http://www.worldscientific.com/worldscinet/mpl

    Reliable estimation of prediction uncertainty for physico-chemical property models

    Full text link
    The predictions of parameteric property models and their uncertainties are sensitive to systematic errors such as inconsistent reference data, parametric model assumptions, or inadequate computational methods. Here, we discuss the calibration of property models in the light of bootstrapping, a sampling method akin to Bayesian inference that can be employed for identifying systematic errors and for reliable estimation of the prediction uncertainty. We apply bootstrapping to assess a linear property model linking the 57Fe Moessbauer isomer shift to the contact electron density at the iron nucleus for a diverse set of 44 molecular iron compounds. The contact electron density is calculated with twelve density functionals across Jacob's ladder (PWLDA, BP86, BLYP, PW91, PBE, M06-L, TPSS, B3LYP, B3PW91, PBE0, M06, TPSSh). We provide systematic-error diagnostics and reliable, locally resolved uncertainties for isomer-shift predictions. Pure and hybrid density functionals yield average prediction uncertainties of 0.06-0.08 mm/s and 0.04-0.05 mm/s, respectively, the latter being close to the average experimental uncertainty of 0.02 mm/s. Furthermore, we show that both model parameters and prediction uncertainty depend significantly on the composition and number of reference data points. Accordingly, we suggest that rankings of density functionals based on performance measures (e.g., the coefficient of correlation, r2, or the root-mean-square error, RMSE) should not be inferred from a single data set. This study presents the first statistically rigorous calibration analysis for theoretical Moessbauer spectroscopy, which is of general applicability for physico-chemical property models and not restricted to isomer-shift predictions. We provide the statistically meaningful reference data set MIS39 and a new calibration of the isomer shift based on the PBE0 functional.Comment: 49 pages, 9 figures, 7 table
    corecore