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Solution of the dual reflection equation for Af,l_)l solid-on-
solid model
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R. Sasaki
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We obtain a diagonal solution of thaual reflectionequation for the eIIiptioAgl_)1
solid-on-solid model. The isomorphism between the solutions of the reflection
equation and its dual is studied. )04 American Institute of Physics.

[DOI: 10.1063/1.1795972

I. INTRODUCTION

Two-dimensional lattice spin models in statistical mechanics have traditionally been solved by
imposing periodic boundary condition. The Yang—Baxter equ%tﬁon

Ry2(Ug — Up) Rya(Ug — Ug) Rog(Uy — Ug) = Rpg(Up — Ug)Ryg(Uy — Ug)Ryp(Uy — Up), (1.1

together with such boundary condition then leads to families of commutingreovgfer matrices
and hence soIvabiIit§/.The work of Sklyaniﬁ shows that, by using the reflection equati®tE)
introduced by Cherednik

Ry2(Ug = Up) Ky (Up) Rog(Ug + Up) Kp(Up) = Kp(Up) Ryo(Ug + Up) Ky (Ug) Rog (U — Up), (1.2

it is also possible to construct families of commutidguble-row transfer matricefor vertex
models with open boundary conditions. Then such a scheme has been generafaesHtipe
solid-on-solid(SOS models>®

In order to construct thelouble-row transfer matricedbesides the RE, one needs the dual
reflection equation whose explicit form is related with the crossing-unitarity relation of the
R-matrix>">® For theZ, Belavin modef the dual RE reads

Rya(Up = U)K (U Rpg(— Ug = Uy = nW)Kp(Up) = K(Up) Rya(— Uy = Up = NW)K (Up) Rog(Up = Uy),
(1.3

wherew is the crossing parameter of tiematrix. Moreover, there exists simple-formisomor-
phism between the solution of the RE2) and that of its dua{1.3)

~ nw
K(u):K(—u—?). (1.9
However, for integrable SOS models, due to the complicated crossing-unitarity relation of

R-matrix (Boltzmann weight (2.18),>'° the dual RE(3.2) contains the face-type parametéks}

in addition to the spectral parameter. A generalized isomorphism between the solutions to the RE
and its dual for SOS models, if exists, is yet to be found. In this sense, the dual RE for the
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face-type models has got its ovimdependentole in contrast with the vertex model.

The RE of SOS models has been solved to give the diagomadtrices for the'”, B, CV,
fo), (i), and A(22;1)+ SOS modeld! But the generiqnondiagonal K-matrix is known only for
the Al SOS modef?® However, the dual RE of the face type was solved only forAlfe SOS
model® In this article, we consider the dual RE for thél_)l SOS model. After briefly reviewing
the face-vertex correspondence betweenzhdelavin model and the\gl_)l SOS modet* we
construct the isomorphism between the solution of the RE and its dual f@(ﬁtﬂ(SOS model in
Sec. lll. In Sec. IV, we derive a diagonal solution to the dual RE by solving directly. Then we
prove that our diagonal solution to the dual RE can be obtained through the isomorphism trans-
formation (3.16) from the diagonal solutiotl of RE by a special choice of the free parametér
The final section is for conclusions.

Il. REFLECTION EQUATION AND ITS DUAL FOR Agl_)l SOS MODEL

A. 7, Belavin R-matrix

Let us fix 7 such that InGr) >0 and a generic complex number Introduce the following
elliptic functions:

0{2](% = > exp\- la{(m+a)?r+2m+a)(u+b)}, (2.3
14 1
) 2 n 2

V() =6 . (u,n7), o(u) =6 L (u,7. (2.2
2 2

Among them thes-function satisfies the following identity:

au+x)au—-x)a(v +y)o(w -y) —a(u+y)o(u-y)o(v +Xx)o(v = X)
=g(u+tv)o(U-v)o(X+y)a(x-vy), (2.3

which will be useful in the following.[Our o-function is the d-function 9;(u).® It has the

following relation with theWeierstrassiaro-function if denoted byrw(u):ow(u)oceﬂluza(u), ™
=5 -437_ne?"/ (1-¢?") andg=e""1".]
Let RB(u) e EndC"® C") be theZ, Belavin R-matrix given by

RB(u) = > R(WEL @ E, (2.4
ikl
in which E;; is the matrix with eIement(sEij)'k: Sid- The coefficient functions ate
h ¢ +
WoWI UEW) et ) mod n

K(u) =1 o(u+w) 69 (w) () (2.5
0 otherwise.

Here we have set
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n-1
H 69 (u)
h(w) = 2 2.6
[T 00)
=1

The R-matrix satisfies the quantum Yang-Baxter Kd.1) and the following unitarity and
crossing-unitarity relation§’

Unitarity: R®,(u)RE,(- u) =id, (2.7

. o e Mg (W) or(u+ nw)
Crossing-unitarity(R®)%2 (- u— nw)(RE)2(u) = PR — id, (2.9

wheret; denotes the transposition in thil space.

B. A%, SOS R-matrix and face-vertex correspondence

Let {g]i=1,2,... n} be the orthonormal basis of the vector sp&€esuch that(e;, €)= §;.
The A,.; simple roots are{a;=¢—¢,41]/i=1,... n—1} and the fundamental weight§A;|i
=1,... n—1} satisfying(A;, a;)=; are given by

i .n
i
A, :E Gk‘—z €k-
k=1 Ny=1
Set

n n
i:ei—?,?:EE € i=1,...n then> i=0. (2.9
Ni=1 i=1
For each dominant weight:E{L‘llaiAi, a e 7%, there exists an irreducible highest weight finite-
dimensional representation, of A,_; with the highest vectofA). For example the fundamental
vector representation MAl.

Let b be the Cartan subalgebra®f_, andh* be its dual. A finite-dimensional diagonalizable
h-module is a complex finite-dimensional vector spatkewith a weight decompositio'Ww
=@ W], so thath acts onW ] by xv=u(X)v, (xe h,v e Wu]). For example, the funda-
mental vector representation\lz‘(]”, the nonzero weight spac®qi|=Ce, i=1,... n.

For a generio\ e C", define

n
)\i =<)\,Ei>, )\” :)\i_)\j! |7\| 22)\“ |,j =1,...n. (210)
=1

Let R(z,\) e EndC"® C") be theR-matrix of theAﬁll_)l SOS model given by

n

R(z\) = 2 Ri(ZME; ® E; + 2 {Rl(zME; ® Ejj + Rl (zME; ® Ey}. (2.11)
i=1 i#]

The coefficient functions are

i _ i _o(@a(\jw-w)
Ri(zM) =1, Rl(z\) = o2+ W)’ (2.12
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i _ a(W)o(Z+ \;;w)
Ri@N) o(z+w)o(\jw) 213

and)\ij is defined in(2.10. The R-matrix satisfies the dynamicéhodified quantum Yang—Baxter
equation
Rio(z1 = 2o, A = h®)Rya(z3 = 23, M) Rps(2, — 23,\ — hP)
= R23(22 - Z3,)\)R13(Zl - 23,)\ - h(z))Rlz(Zl - 22,)\), (214)

with unitarity relation

Rlz(u,)\)Rzl(_ u,)\) =id. (215)

We adopt the notationR;»(z,\—h®) acts on a tensov,;®v,®v; as R(z,\—u)®id if v
e Ww]. Let us introduce

f(NK) o\ +i+];i)

RN =RUN)Y R i (2.16
faN+k;k) faN+50)
N
fo0n)) = T 28 217
kej o(W)
The R-matrix satisfies the following crossing-unitarity relatfon
n V=1Inw
~ n a e +n .

S Reu-nwh - iz R iz laz ST g, g o g

izjp=1 12 32 g(u+wo(u+nw-w) 2

Let us introduce an intertwiner—&component column vectas, , _;(u) whosekth element is
K
() = 69U+ nwh). (2.19

Using the intertwiner, the face-vertex correspondence can be writtén as

R?Z(ul = Up) hy \-i(U1) ® i \—ij(Up) = % R(u; - U2:>\)!§|¢A—T,A—T—Q(U1) ® Pr-i(Up).

(2.20

Then the Yang—Baxter equation of tif Belavin R-matrix RB(u) (1.1) is equivalent to the
dynamical Yang—Baxter equation of tlﬁél_)l SOSR-matrix R(u,\) (2.14).

Ill. RE AND DUAL RE FOR A;l_)l SOS MODEL

In this section, using the intertwiner between theBelavin R-matrix and that of theAf}fl
SOS model, we construct the isomorphism between the solution of the RE fAf_ﬂwSOS model
and that of its dual from the isomorphisgh.4).

A. RE and its dual for SOS model
The RE of theK-matrix X(\|u) for the face-type SOS model was given as followg: e
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3 3 Rl = U V2 I+ 1+ TJupER(Uy + U NI ZICON + 5+ 5lup) 2
2 Jul2
= 2 3 KO j1 + iU PRy + Uy, O N+ o+ TJupIR(uy — i M2 2. (3.1)

ERPYENE:

The dual RE of th&K-matrix I~C()\|u) was written down b§/6

> > Ruy-uy, )IOIO’C(A+J1+|1|U1)1R( Up—Up— nW)\)ll |2’C()\"'Jz"'|3|uz)'

ini2 2
—EEIC()\+]O+|O|U2)JOR( Up—Up— nW)\)IOlllc()\+12+|1|ul)1R(U2 ul,k)}zii,
inip iz

(3.2

whereR(u,\) is defined in(2.16) for theAgl_)l SOS model. The explicit expressionsR(u,\) for
other types of SOS models were given in Ref. 6. Because ohdimérivial dependence on the
face-type parametef3;}, the dual RE of SOS models should be treated separately in contrast with
those of the vertex models.

As in the Sklyanin scheme for the vertex models, one can construct families of commuting
double-row transfer matricefor the SOS model with open boundary condition in terms of the

K-matricesiC(\ |u) and (A |u).>®

B. Isomorphism between the solutions of the RE and its dual for Af}_)l SOS model

Thanks to the face-vertex correspondence betweefi ffigelavin vertex model and théﬁl_)l
SOS mode(2.20), we can construct the isomorphism between the solutions of the RE and its dual
for the Aff_)l SOS model from the isomorphis(i.4) of the Z,, Belavin vertex model.

Let us introduce other types of intertwinegsand ¢ satisfying the following orthogonality
conditions:

K
S B e ) =8, (3.3
k
S B (W ()= (3.4
” ISTPY i :
One can derive the “completeness” relations from the above conditions
S o e (w=4a, (3.5
k
E¢“(w$“(m-& (3.6
A+ Ak T g :

and the following relation between the intertwindr?and& from their definitiong3.3) and(3.4):6

n-1
B a<u+w|)\|——2 —W) W)
Dria(u) = { Kk

n-1 o\ w+w
furwil-2=E) L oo

Noting the fact(e, €;»=1/n and the definition of the intertwingR.19), one can derive the follow-
ing relations: forda e C

}Tﬁm,x(u -nw). (3.7)
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Drraeptaes (W) = Py iU+ aw), (3.9
reaerraci(U) = dyas(U+aw), (3.9
Brraerrasi (W) = Brpsi(u+ aw). (3.10
Define
K\ u)! = E B WKW (- ), (3.11
K\ u)! = E B (- WKW - (). (3.12

Then we have
Theorem 1 (Ref. 6):The above relations (3.11) and (3.12) map the solutiofig) l&nd K(u)

to the RE (1.2) and the dual (1.3) for the Belavin Rmatrix to the solutiondC(\ |u) and (A |u)
to the RE (3.1) and the dual (3.2) for thél_)lf\SOS Rmatrix, and vice versa
Using the relation$3.5) and(3.6), one can invert3.11)

KW} 2 B RO, (- u). (3.13

Using the isomorphisnil.4) between the solutions of the RE and the dual RE forZh8elavin
R-matrix, the relationg3.5), (3.6), and(3.12), we have

KWy, =2 6% (- WKW 05(0)
st
=S A ok(-u- 0 s
. nw ) nw)’
S SF iy oo G el-o- G

nul nwi o
X(ﬁ}\ry )\/_i\(u + 7>¢)\—;)+/TL, )\—f/(u)

. nw)/ LAY
= > MO\ —i|- u)}’lC()\’|—u——) M()\’,)\— v|u+—> , (3.19
ij 2 i 2 "
where\’ e C" is arbitrary and arossing matrix MA,)\’|u)j” is defined by
nw
Mo =S 3w, (u- ) 319
t

Finally, we obtain
Theorem 2: The solutions to the RE (3.1) and the dual (3.2) for ttfél/SOS Rmatrix have
the following isomorphism:
~ s nw)’ o nw)!
K\, = > MO =i|- u)j”IC()\’|— u- ?) M()\’,)\ -u+ ?> , (3.16
i [ ©
where\’ e C" is arbitrary.
We remark that the crossing mat(i&.15) is generallynondiagonal Hence, the corresponding
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I~C()\|u) of the solution to the dual RE3.2) obtained by the isomorphis3.16) from the diagonal
solution™ to RE is generally nondiagonal, too, except for the case that a special choice of
“modul’ parameter\’ is chosen ag4.5) (this special case will be clarified later in the next
section). However, in order to diagonalize the correspondilogible-row transfer matricefor the

Aﬁll_)l SOS model by the algebraic Bethe ansatz method, one né€édsi) and I’E(Mu) both
diagonall.s'lgln the next section, we shall search for a diagofgé\ |u).
IV. DIAGONAL SOLUTION OF THE DUAL RE FOR Agl_)l SOS MODEL
In this section we look for the diagonal solution to the dual BE) for theAff_)1 SOS model,
namely, theK-matrix X(\|u) of following form:
Kl =k(\uyd], (4.

where{P(M u);} are the functions of the face parametgxg and the spectral parameter From
directly solving the Eq(3.2), we have
Theorem 3: For

— nw
~ a(\jw —w) U<)\iw+§+u+?)
kmwx:{[[ e }

ket O(NW) <T<)\'W+E— - M)
I 2

f(u,N), (4.2

in Whichzis a free parameter and(fi,\) is any nonvanishing function &f and u the diagonal

K-matrix I~C()\|u) with entries (4.1) and (4.2) is a solution to the dual RE (3.2) for tﬁ]él/SOS
model.

Proof: Substitutinng(M u) of form (4.1) into the dual RE3.2) for the Afffl SOS model, one
finds the only nontrivial conditions dé(\ |u); are

R(u; = U117\)}:=~k(7\ +i+ j|U1)j~R(‘ Up—Up— nWJ\)HT(O\ +i+ jlup);
+ R(Uy = ug, VKO + T+ Jug)iR(= Uy = up = nw, MR+ + uy);
=R(u, - ul,)\)ﬂT(()\ +i+ i|u1)i~R(— Up — Uy — NW, )\)f}T(()\ +i+ iluy);
+R(Up - Ulyk)}&()\ +i+ ]|U1)j§(‘ Up—Up— nW,)\)ﬂNIZ()\ +i+ Jlui, i # .

Substituting(2.16) and (4.2) into the above equation, the dual RB.2) is equivalent to the
following equation:

oMW+ € —upa(w+ ¢ +up)

a(u_+ \jw)a(u,) — o(u)o(u, — \jjw) — —
oMW+ & +u)o(Nw+ & —uy)

y 0’(7\1W+? - Ué)o'()\iW“‘? + Up)

a()\jw+g +Uuy)o(\w +§ - uy)

a(\NW+ €' —upa(w+ & +uy)

= o(u, + Njw)o(u) = o(uy) (U = \;w) . (43

o()\jw+? +upo(\w +? -up)

whereu_=u;—uj, u,=u;+uy, U/ =-u;—nw2, ¢ =¢+(n—-2)/nw. Equation(4.3) is a consequence
of the identity(2.3). Then we complete our proof.

Now we shall study the relation between our solution of the dual RE and the diagonal solution
of RE which was given as follows:
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oW+ E-u)

K] =K Juid = gun) = d

(4.4

Here,g(\ |u) is any nonvanishing function of andu, and¢ is a free parameter. Let us choose

’ n_ ’ 1
)\:)\'}'EED )\i:)\i+§! (45)

the vectore is defined in(2.9). Using the relation(3.8), the crossing matridVi(A\ ,A+(n/2)e
—i|u)} defined in(3.15 becomes simple

n_ -~ " w) _ s 50 ® v
M (X,)\ Toe '|U>_ =2 _;t,)x—f/(u)¢§\tl(n/2)e,>\+(n/2)e—a<u 5 ) =2 ¢, W, 5Ww=4".
I t t

(4.6

The resulting solution to the dual RE by the isomorphism transform&Bdi®) from the diagonal
solution to RE is

~ n nw n_ . nw\”
/C()\|U)Z=k<)\+52[—u—?) M()\+§E,)\—V|U+?) . (4.7

v M

The relationg3.7) and (4.5) enable us to further simplify the expression of the crossing matrix
M(\+(n/2)e,\=v[u+nw/2) :

- n-2 n-1
ol u+r N -w+—w-——
n_ . nw)” 2 2 (N W — W)
MM gehilury) = n n-1 (s
# a<u+|>\—?/lw+§w— 5 ) kew TR

~ () nwih o
x> ¢)\+(n/2)e,)\+(n/2)e—f/(u 5 >¢>\—f;+,1,x—”y(u)
t

(u+|)\—A|W+ n—ZW_n;1>
_U v 2 2 a()\vkw—w)}

a<u+|)\—13|w+gw—n;l> v T

x> QS?X_;(U) ¢§\t1;+;1,>\—iz(u)
t

(u+m—ww+913w—915)

B o g 2 2 (N W — w) } 5

- .. n n-1 AW W
o(u+|)\—vlw+§w——2 ) v AW

Finally, the resulting solution to the dual RE by the isomorphism transform&didi6) from the
diagonal solution to RE is given by
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R n-2 n-1
o\u+h-w 2 W= 2 (N W —w) n nw
T Oy W=
K\ u)? = KN+ =g|-u-—1] &.
(Nu. . n n-1 kl;lv o\ W) ( 25[ 2) "
0'u+|)\—V|W+§W—T

14

(4.9

Substituting the diagonal solution of R@.4) into the above equation and after redefining the

boundary parametef and the free nonvanishing functiditu,A), one finds that the resulting
diagonal solution(4.8) to the dual RE is exactly the same @s2).

V. CONCLUSION AND COMMENTS

By using the face-vertex corresponderi2ze20) and the isomorphisr(l.4) between the solu-
tions to the RE and its dual for thH&, Belavin R-matrix, we construct the isomorphism between
the solutions to the RE and its dual for m&l SOSR-matrix. By directly solving the equation,
we obtain a diagonal solution to the dual RE. Our solution to the dual RE can also be obtained
through the isomorphism transformatit®16) from the diagonal solution to RE obtained in Ref.

11 by a special choice of the free parametéx4.5). Furthermore, the diagonEI(Mu) obtained
in this article enables us to diagonalize thauble-row transfer matricesf the Z,, Belavin model

with open boundary condition described by the diagdG@l|u) and the diagona’il"C()\|u).19

Alternatively in Ref. 20, the very isomorphism with the special choice of the free parameter
N\’ (4.5) from the diagonal solution of RE to the diagonal solution of the dual RE was constructed
by fusion procedure. However, ogenericisomorphism transformatio(3.16) gives a way to
construct anondiagonalsolution of the dual RE with additional free parametpx§;.
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