136,276 research outputs found
Exact Outage Performance Analysis of Multiuser Multi-relay Spectrum Sharing Cognitive Networks
In this paper, we investigate the outage performance of dual-hop multiuser multi-relay cognitive radio networks under spectrum sharing constraints. Using an efficient relay-destination selection scheme, the exact and asymptotic closed-form expressions for the outage probability are derived. From these expressions it is indicated that the achieved diversity order is only determined by the number of secondary user (SU) relays and destinations, and equals to M+N (where M and N are the number of destination nodes and relay nodes, respectively). Further, we find that the coding gain of the SU network will be affected by the interference threshold at the primary user (PU) receiver. Specifically, as the increases of the interference threshold, the coding gain of the considered network approaches to that of the multiuser multi-relay system in the non-cognitive network. Finally, our study is corroborated by representative numerical examples
Proposed design and experimental performance of short two-dimensional curved wall diffusers utilizing suction slots
Design, characteristics, and performance tests of short two dimensional curved wall diffusers using suction slot
Optimization of Dimples in Microchannel Heat Sink with Impinging Jets—Part B: the Influences of Dimple Height and Arrangement
The combination of a microchannel heat sink with impinging jets and dimples (MHSIJD) can effectively improve the flow and heat transfer performance on the cooling surface of electronic devices with very high heat fluxes. Based on the previous work by analysing the effect of dimple radius on the overall performance of MHSIJD, the effects of dimple height and arrangement were numerically analysed. The velocity distribution, pressure drop, and thermal performance of MHSIJD under various dimple heights and arrangements were presented. The results showed that: MHSIJD with higher dimples had better overall performance with dimple radius being fixed; creating a mismatch between the impinging hole and dimple can solve the issue caused by the drift phenomenon; the mismatch between the impinging hole and dimple did not exhibit better overall performance than a well-matched design
Differential Entropy on Statistical Spaces
We show that the previously introduced concept of distance on statistical
spaces leads to a straightforward definition of differential entropy on these
statistical spaces. These spaces are characterized by the fact that their
points can only be localized within a certain volume and exhibit thus a feature
of fuzziness. This implies that Riemann integrability of relevant integrals is
no longer secured. Some discussion on the specialization of this formalism to
quantum states concludes the paper.Comment: 4 pages, to appear in the proceedings of the joint meeting of the 2nd
International Conference on Cybernetics and Information Technologies, Systems
and Applications (CITSA 2005) and the 11th International Conference on
Information Systems Analysis and Synthesis (ISAS 2005), to be held in
Orlando, USA, on July 14-17, 200
A Chandra ACIS view of the Thermal Composite Supernova Remnant 3C391
We present a 60 ks Chandra ACIS-S observation of the thermal composite
supernova remnant 3C391. The southeast-northwest elongated morphology is
similar to that previously found in radio and X-ray studies. This observation
unveils a highly clumpy structure of the remnant. Detailed spatially resolved
spectral analysis for the small-scale features reveals that the interior gas is
generally of normal metal abundance and has approached or basically reached
ionization equilibrium. The hydrogen column density increases from southeast to
northwest. Three mechanisms, radiative rim, thermal conduction, and cloudlet
evaporation, may all play roles in the X-ray appearance of 3C391 as a "thermal
composite" remnant, but there are difficulties with each of them in explaining
some physical properties. Comparatively, the cloudlet evaporation model is
favored by the main characteristics such as the highly clumpy structure and the
uniform temperature and density distribution over most of the remnant. The
directly measured postshock temperature also implies a young age, about 4 kyr,
for the remnant. The postshock gas pressure derived from the NE and SW rims,
which harbor maser spots, is consistent with the estimate for the maser
regions. An unresolved X-ray source is observed on the northwest border and its
spectrum is best fitted by a power-law.Comment: aastex, 27 pages (including 4 figures), to appear in the ApJ 1 Dec.
2004, v616 issu
Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene
From the perspective of bond relaxation and vibration, we have reconciled the
Raman shifts of graphene under the stimuli of the number-of-layer,
uni-axial-strain, pressure, and temperature in terms of the response of the
length and strength of the representative bond of the entire specimen to the
applied stimuli. Theoretical unification of the measurements clarifies that:
(i) the opposite trends of Raman shifts due to number-of-layer reduction
indicate that the G-peak shift is dominated by the vibration of a pair of atoms
while the D- and the 2D-peak shifts involves z-neighbor of a specific atom;
(ii) the tensile strain-induced phonon softening and phonon-band splitting
arise from the asymmetric response of the C3v bond geometry to the C2v
uni-axial bond elongation; (iii) the thermal-softening of the phonons
originates from bond expansion and weakening; and (iv) the pressure- stiffening
of the phonons results from bond compression and work hardening. Reproduction
of the measurements has led to quantitative information about the referential
frequencies from which the Raman frequencies shift, the length, energy, force
constant, Debye temperature, compressibility, elastic modulus of the C-C bond
in graphene, which is of instrumental importance to the understanding of the
unusual behavior of graphene
The design of a mechanical referencing system for the rear drum of the Longwall Shearer Coal Miner
The design of two systems which reference the position of a longwall shearer coal miner to the mine roof of the present cut and of the last cut are presented. This system is part of an automation system that will guide the rear cutting drum in such a manner that the total depth of cut remains constant even though the front drum may be following an undulating roof profile. The rear drum referencing mechanism continually monitors the distance from the mine roof to the floor for the present cut. This system provides a signal to control a constant depth of cut. The last cut follower mechanism continually monitors the distance from the mine roof of the prior cut to the cutting drum. This latter system provides a signal to minimize the step height in the roof between cuts. The dynamic response of this hydraulic-pneumatic and mechanical system is analyzed to determine accumulator size and precharge pressure
Mach number effects on transonic aeroelastic forces and flutter characteristics
Transonic aeroelastic stability analysis and flutter calculations are presented for a generic transport-type wing based on the use of the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) finite-difference code. The CAP-TSD code was recently developed for transonic unsteady aerodynamic and aeroelastic analysis of complete aircraft configurations. A binary aeroelastic system consisting of simple bending and torsion modes was used to study aeroelastic behavior at transonic speeds. Generalized aerodynamic forces are presented for a wide range of Mach number and reduced frequency. Aeroelastic characteristics are presented for variations in freestream Mach number, mass ratio, and bending-torsion frequency ratio. Flutter boundaries are presented which have two transonic dips in flutter speed. The first dip is the usual transonic dip involving a bending-dominated flutter mode. The second dip is characterized by a single degree-of-freedom torsion oscillation. These aeroelastic results are physically interpreted and shown to be related to the steady state shock location and changes in generalized aerodynamic forces due to freestream Mach number
Quantum transfer matrix method for one-dimensional disordered electronic systems
We develop a novel quantum transfer matrix method to study thermodynamic
properties of one-dimensional (1D) disordered electronic systems. It is shown
that the partition function can be expressed as a product of local
transfer matrices. We demonstrate this method by applying it to the 1D
disordered Anderson model. Thermodynamic quantities of this model are
calculated and discussed.Comment: 7 pages, 10 figure
- …