253 research outputs found

    Connecting HRM and Change Management: How HR Practices Can Stimulate Change Readiness

    Get PDF
    Organizations are continuously under pressure to adapt to new developments such as policy changes, budgets cuts, and the introduction of new management ideologies. To adjust successfully to changing conditions, it is important that employees feel vital and are pro-active so that they can help implementing proposed organizational changes. However, how job proactivity and vitality is achieved is still unclear. This study connect HRM literature with change management literature to analyze how HR practices can increase proactivity and vitality at work. We used data collected in three large public healthcare organizations in the Netherlands (n = 1,507). SEM results shows that three HR practices are particularly effective for improving proactivity and vitality: 1) autonomy, 2) participation in decision-making, and 3) teamwork. Based on these results, we discuss the possibilities of using HRM to stimulate employees’ readiness for organizational change

    Connecting HRM and Change Management: The Importance of Proactivity and Vitality

    Get PDF
    Purpose. Organizations are continuously under pressure to adapt to changing circumstances. Job proactivity and vitality are important in changing environments. For instance, vital employees can better deal with change because they possess more energy. However, it is still unclear how organizations can stimulate proactivity and vitality. This study connects HRM and change management by analyzing how HRM practices can stimulate job proactivity and vitality. Design. We used survey data collected in three large public healthcare organizations in the Netherlands (n = 1,507) to investigate the effects of five important HRM practices on proactivity and vitality. Analyses were performed using Structural Equation Modeling. Findings. Results suggest that three HRM practices are particularly effective for improving proactivity and vitality: 1) high autonomy, 2) high participation in decision-making, and 3) high quality teamwork. Based on these results, we discuss the possibilities of using HRM to improve employees’ abilities t

    Draft genome of a novel methanotrophic Methylobacter sp. from the volcanic soils of Pantelleria Island

    Get PDF
    The genus Methylobacter is considered an important and often dominant group of aerobic methane-oxidizing bacteria in many oxic ecosystems, where members of this genus contribute to the reduction of CH4 emissions. Metagenomic studies of the upper oxic layers of geothermal soils of the Favara Grande, Pantelleria, Italy, revealed the presence of various methane-oxidizing bacteria, and resulted in a near complete metagenome assembled genome (MAG) of an aerobic methanotroph, which was classified as a Methylobacter species. In this study, the Methylobacter sp. B2 MAG was used to investigate its metabolic potential and phylogenetic affiliation. The MAG has a size of 4,086,539 bp, consists of 134 contigs and 3955 genes were found, of which 3902 were protein coding genes. All genes for CH4 oxidation to CO2 were detected, including pmoCAB encoding particulate methane monooxygenase (pMMO) and xoxF encoding a methanol dehydrogenase. No gene encoding a formaldehyde dehydrogenase was present and the formaldehyde to formate conversion follows the tetrahydromethanopterin (H4MPT) pathway. “Ca. Methylobacter favarea” B2 uses the Ribulose-Mono-Phosphate (RuMP) pathway for carbon fixation. Analysis of the MAG indicates that Na+/H+ antiporters and the urease system might be important in the maintenance of pH homeostasis of this strain to cope with acidic conditions. So far, thermoacidophilic Methylobacter species have not been isolated, however this study indicates that members of the genus Methylobacter can be found in distinct ecosystems and their presence is not restricted to freshwater or marine sediments

    Pharmacogenomic associations of adverse drug reactions in asthma:systematic review and research prioritisation

    Get PDF
    We would like to thank the NIHR Collaboration for Leadership in Applied Health Research and Care North West Coast (CLAHRC) for funding Amanda McKenna’s internship, and Charlotte Kings MPhil, and the members of the PiCA consortia for their help in completing the survey. U. Potočnik, K. Repnik and V. Berce were supported by SysPharmPedia grant, co-financed by Ministry of Education, Science and Sport of the Republic of Slovenia Author information These authors contributed equally: Charlotte King, Amanda McKenna These authors jointly supervised this work: Ian Sinha, Daniel B. HawcuttPeer reviewedPublisher PD

    The role of grass volatiles on oviposition site selection by Anopheles arabiensis and Anopheles coluzzii

    Get PDF
    Background: The reproductive success and population dynamics, of Anopheles malaria mosquitoes is strongly influenced by the oviposition site selection of gravid females. Mosquitoes select oviposition sites at different spatial scales, starting with selecting a habitat in which to search. This study utilizes the association of larval abundance in the field with natural breeding habitats, dominated by various types of wild grasses, as a proxy for oviposition site selection by gravid mosquitoes. Moreover, the role of olfactory cues emanating from these habitats in the attraction and oviposition stimulation of females was analysed. Methods: The density of Anopheles larvae in breeding sites associated with Echinochloa pyramidalis, Echinochloa stagnina, Typha latifolia and Cyperus papyrus, was sampled and the larvae identified to species level. Headspace volatile extracts of the grasses were collected and used to assess behavioural attraction and oviposition stimulation of gravid Anopheles arabiensis and Anopheles coluzzii mosquitoes in wind tunnel and two-choice oviposition assays, respectively. The ability of the mosquitoes to differentiate among the grass volatile extracts was tested in multi-choice tent assays. Results: Anopheles arabiensis larvae were the most abundant species found in the various grass-associated habitats. The larval densities described a hierarchical distribution, with Poaceae (Echinochloa pyramidalis and Echinochloa stagnina)-associated habitat sites demonstrating higher densities than that of Typha-associated sites, and where larvae were absent from Cyperus-associated sites. This hierarchy was maintained by gravid An. arabiensis and An. coluzzii mosquitoes in attraction, oviposition and multi-choice assays to grass volatile extracts. Conclusions: The demonstrated hierarchical preference of gravid An. coluzzii and An. arabiensis for grass volatiles indicates that vegetation cues associated with larval habitats are instrumental in the oviposition site choice of the malaria mosquitoes. Identifying volatile cues from grasses that modulate gravid malaria mosquito behaviours has distinct potential for the development of tools to be used in future monitoring and control methods
    • 

    corecore