59 research outputs found

    The averaged null energy condition for general quantum field theories in two dimensions

    Full text link
    It is shown that the averaged null energy condition is fulfilled for a dense, translationally invariant set of vector states in any local quantum field theory in two-dimensional Minkowski spacetime whenever the theory has a mass gap and possesses an energy-momentum tensor. The latter is assumed to be a Wightman field which is local relative to the observables, generates locally the translations, is divergence-free, and energetically bounded. Thus the averaged null energy condition can be deduced from completely generic, standard assumptions for general quantum field theory in two-dimensional flat spacetime.Comment: LateX2e, 16 pages, 1 eps figur

    Supersymmetric Field-Theoretic Models on a Supermanifold

    Get PDF
    We propose the extension of some structural aspects that have successfully been applied in the development of the theory of quantum fields propagating on a general spacetime manifold so as to include superfield models on a supermanifold. We only deal with the limited class of supermanifolds which admit the existence of a smooth body manifold structure. Our considerations are based on the Catenacci-Reina-Teofillatto-Bryant approach to supermanifolds. In particular, we show that the class of supermanifolds constructed by Bonora-Pasti-Tonin satisfies the criterions which guarantee that a supermanifold admits a Hausdorff body manifold. This construction is the closest to the physicist's intuitive view of superspace as a manifold with some anticommuting coordinates, where the odd sector is topologically trivial. The paper also contains a new construction of superdistributions and useful results on the wavefront set of such objects. Moreover, a generalization of the spectral condition is formulated using the notion of the wavefront set of superdistributions, which is equivalent to the requirement that all of the component fields satisfy, on the body manifold, a microlocal spectral condition proposed by Brunetti-Fredenhagen-K\"ohler.Comment: Final version to appear in J.Math.Phy

    Local covariant quantum field theory over spectral geometries

    Full text link
    A framework which combines ideas from Connes' noncommutative geometry, or spectral geometry, with recent ideas on generally covariant quantum field theory, is proposed in the present work. A certain type of spectral geometries modelling (possibly noncommutative) globally hyperbolic spacetimes is introduced in terms of so-called globally hyperbolic spectral triples. The concept is further generalized to a category of globally hyperbolic spectral geometries whose morphisms describe the generalization of isometric embeddings. Then a local generally covariant quantum field theory is introduced as a covariant functor between such a category of globally hyperbolic spectral geometries and the category of involutive algebras (or *-algebras). Thus, a local covariant quantum field theory over spectral geometries assigns quantum fields not just to a single noncommutative geometry (or noncommutative spacetime), but simultaneously to ``all'' spectral geometries, while respecting the covariance principle demanding that quantum field theories over isomorphic spectral geometries should also be isomorphic. It is suggested that in a quantum theory of gravity a particular class of globally hyperbolic spectral geometries is selected through a dynamical coupling of geometry and matter compatible with the covariance principle.Comment: 21 pages, 2 figure

    Central extracorporeal life support with left ventricular decompression for the treatment of refractory cardiogenic shock and lung failure

    Get PDF
    BACKGROUND: The purpose of this prospective study was to evaluate the effects and functional outcome of central extracorporeal life support (ECLS) with left ventricular decompression for the treatment of refractory cardiogenic shock and lung failure. METHODS: Between August 2010 and August 2013, 12 consecutive patients (2 female) with a mean age of 31.6 ± 15.1 years received central ECLS with left ventricular decompression for the treatment of refractory cardiogenic shock and lung failure. Underlying disease was acute cardiac decompensation due to dilated cardiomyopathy (n = 3, 25%), coronary artery disease with acute myocardial infarction (AMI) (n = 3, 25%), and acute myocarditis (n = 6, 50%). We routinely implemented ECLS by cannulating the ascending aorta, right atrium and inserting a left ventricular decompression cannula vent via the right superior pulmonary vein. RESULTS: All patients were successfully bridged to either recovery (n = 3, 25%), long-term biventricular support (n = 6, 50%) or cardiac transplantation (n = 3, 25%). Seven patients (58.3%) were discharged after a mean hospital stay of 42 ± 11.9 days. The overall survival from ECLS implantation to the end of the study was 58.3%. The cumulative ICU stay was 23.1 ± 9.6 days. The length of support was 8.0 ± 4.3 days (range 3-17 days). CONCLUSIONS: We strongly recommend left ventricular decompression in refractory cardiogenic shock and lung failure to avoid pulmonary edema, left heart distension and facilitate myocardial recovery

    Dirac field on Moyal-Minkowski spacetime and non-commutative potential scattering

    Full text link
    The quantized free Dirac field is considered on Minkowski spacetime (of general dimension). The Dirac field is coupled to an external scalar potential whose support is finite in time and which acts by a Moyal-deformed multiplication with respect to the spatial variables. The Moyal-deformed multiplication corresponds to the product of the algebra of a Moyal plane described in the setting of spectral geometry. It will be explained how this leads to an interpretation of the Dirac field as a quantum field theory on Moyal-deformed Minkowski spacetime (with commutative time) in a setting of Lorentzian spectral geometries of which some basic aspects will be sketched. The scattering transformation will be shown to be unitarily implementable in the canonical vacuum representation of the Dirac field. Furthermore, it will be indicated how the functional derivatives of the ensuing unitary scattering operators with respect to the strength of the non-commutative potential induce, in the spirit of Bogoliubov's formula, quantum field operators (corresponding to observables) depending on the elements of the non-commutative algebra of Moyal-Minkowski spacetime.Comment: 60 pages, 1 figur

    Dynamical Casimir Effect with Semi-Transparent Mirrors, and Cosmology

    Full text link
    After reviewing some essential features of the Casimir effect and, specifically, of its regularization by zeta function and Hadamard methods, we consider the dynamical Casimir effect (or Fulling-Davis theory), where related regularization problems appear, with a view to an experimental verification of this theory. We finish with a discussion of the possible contribution of vacuum fluctuations to dark energy, in a Casimir like fashion, that might involve the dynamical version.Comment: 11 pages, Talk given in the Workshop ``Quantum Field Theory under the Influence of External Conditions (QFEXT07)'', Leipzig (Germany), September 17 - 21, 200

    Quantum charges and spacetime topology: The emergence of new superselection sectors

    Full text link
    In which is developed a new form of superselection sectors of topological origin. By that it is meant a new investigation that includes several extensions of the traditional framework of Doplicher, Haag and Roberts in local quantum theories. At first we generalize the notion of representations of nets of C*-algebras, then we provide a brand new view on selection criteria by adopting one with a strong topological flavour. We prove that it is coherent with the older point of view, hence a clue to a genuine extension. In this light, we extend Roberts' cohomological analysis to the case where 1--cocycles bear non trivial unitary representations of the fundamental group of the spacetime, equivalently of its Cauchy surface in case of global hyperbolicity. A crucial tool is a notion of group von Neumann algebras generated by the 1-cocycles evaluated on loops over fixed regions. One proves that these group von Neumann algebras are localized at the bounded region where loops start and end and to be factorial of finite type I. All that amounts to a new invariant, in a topological sense, which can be defined as the dimension of the factor. We prove that any 1-cocycle can be factorized into a part that contains only the charge content and another where only the topological information is stored. This second part resembles much what in literature are known as geometric phases. Indeed, by the very geometrical origin of the 1-cocycles that we discuss in the paper, they are essential tools in the theory of net bundles, and the topological part is related to their holonomy content. At the end we prove the existence of net representations

    Vacuum Fluctuations, Geometric Modular Action and Relativistic Quantum Information Theory

    Full text link
    A summary of some lines of ideas leading to model-independent frameworks of relativistic quantum field theory is given. It is followed by a discussion of the Reeh-Schlieder theorem and geometric modular action of Tomita-Takesaki modular objects associated with the quantum field vacuum state and certain algebras of observables. The distillability concept, which is significant in specifying useful entanglement in quantum information theory, is discussed within the setting of general relativistic quantum field theory.Comment: 26 pages. Contribution for the Proceedings of a Conference on Special Relativity held at Potsdam, 200

    Plant Vaccines: An Immunological Perspective.

    Get PDF
    The advent of technologies to express heterologous proteins in planta has led to the proposition that plants may be engineered to be safe, inexpensive vehicles for the production of vaccines and possibly even vectors for their delivery. The immunogenicity of a variety of antigens of relevance to vaccination expressed in different plants has been assessed. The purpose of this article is to examine the utility of plant-expression systems in vaccine development from an immunological perspective
    • …
    corecore