516 research outputs found

    Invariant quantum discord in qubit-qutrit systems under local dephasing

    Get PDF
    We investigate the dynamics of quantum discord and entanglement for a class of mixed qubit-qutrit states assuming that only the qutrit is under the action of a dephasing channel. We demonstrate that even though the entanglement in the qubit-qutrit state disappears in a finite time interval, partial coherence left in the system enables quantum discord to remain invariant throughout the whole time evolution

    Quantum correlations in a few-atom spin-1 Bose-Hubbard model

    Get PDF
    We study the thermal quantum correlations and entanglement in spin-1 Bose-Hubbard model with two and three particles. While we use negativity to calculate entanglement, more general non-classical correlations are quantified using a new measure based on a necessary and sufficient condition for zero-discord state. We demonstrate that the energy level crossings in the ground state of the system are signalled by both the behavior of thermal quantum correlations and entanglement

    Decoherence on a two-dimensional quantum walk using four- and two-state particle

    Full text link
    We study the decoherence effects originating from state flipping and depolarization for two-dimensional discrete-time quantum walks using four-state and two-state particles. By quantifying the quantum correlations between the particle and position degree of freedom and between the two spatial (xyx-y) degrees of freedom using measurement induced disturbance (MID), we show that the two schemes using a two-state particle are more robust against decoherence than the Grover walk, which uses a four-state particle. We also show that the symmetries which hold for two-state quantum walks breakdown for the Grover walk, adding to the various other advantages of using two-state particles over four-state particles.Comment: 12 pages, 16 figures, In Press, J. Phys. A: Math. Theor. (2013

    Dynamics of Atom-Atom Correlations in the Fermi problem

    Get PDF
    We present a detailed perturbative study of the dynamics of several types of atom-atom correlations in the famous Fermi problem. This is an archetypal model to study micro-causality in the quantum domain where two atoms, the first initially excited and the second prepared in its ground state, interact with the vacuum electromagnetic field. The excitation can be transferred to the second atom via a flying photon and various kinds of quantum correlations between the two are generated during this process. Among these, prominent examples are given by entanglement, quantum discord and nonlocal correlations. It is the aim of this paper to analyze the role of the light cone in the emergence of such correlations.Comment: 14 pages, 7 figure

    Bipartite Entanglement in Continuous-Variable Cluster States

    Full text link
    We present a study of the entanglement properties of Gaussian cluster states, proposed as a universal resource for continuous-variable quantum computing. A central aim is to compare mathematically-idealized cluster states defined using quadrature eigenstates, which have infinite squeezing and cannot exist in nature, with Gaussian approximations which are experimentally accessible. Adopting widely-used definitions, we first review the key concepts, by analysing a process of teleportation along a continuous-variable quantum wire in the language of matrix product states. Next we consider the bipartite entanglement properties of the wire, providing analytic results. We proceed to grid cluster states, which are universal for the qubit case. To extend our analysis of the bipartite entanglement, we adopt the entropic-entanglement width, a specialized entanglement measure introduced recently by Van den Nest M et al., Phys. Rev. Lett. 97 150504 (2006), adapting their definition to the continuous-variable context. Finally we add the effects of photonic loss, extending our arguments to mixed states. Cumulatively our results point to key differences in the properties of idealized and Gaussian cluster states. Even modest loss rates are found to strongly limit the amount of entanglement. We discuss the implications for the potential of continuous-variable analogues of measurement-based quantum computation.Comment: 22 page

    Foundations and Measures of Quantum Non-Markovianity

    Full text link
    The basic features of the dynamics of open quantum systems, such as the dissipation of energy, the decay of coherences, the relaxation to an equilibrium or non-equilibrium stationary state, and the transport of excitations in complex structures are of central importance in many applications of quantum mechanics. The theoretical description, analysis and control of non-Markovian quantum processes play an important role in this context. While in a Markovian process an open system irretrievably loses information to its surroundings, non-Markovian processes feature a flow of information from the environment back to the open system, which implies the presence of memory effects and represents the key property of non-Markovian quantum behavior. Here, we review recent ideas developing a general mathematical definition for non-Markoviantiy in the quantum regime and a measure for the degree of memory effects in the dynamics of open systems which are based on the exchange of information between system and environment. We further study the dynamical effects induced by the presence of system-environment correlations in the total initial state and design suitable methods to detect such correlations through local measurements on the open system.Comment: 31 pages, to be published in the special issue: Loss of coherence and memory effects in quantum dynamics, Journal of Physics B: Atomic, Molecular and Optical Physic

    Slowing and cooling molecules and neutral atoms by time-varying electric field gradients

    Get PDF
    A method of slowing, accelerating, cooling, and bunching molecules and neutral atoms using time-varying electric field gradients is demonstrated with cesium atoms in a fountain. The effects are measured and found to be in agreement with calculation. Time-varying electric field gradient slowing and cooling is applicable to atoms that have large dipole polarizabilities, including atoms that are not amenable to laser slowing and cooling, to Rydberg atoms, and to molecules, especially polar molecules with large electric dipole moments. The possible applications of this method include slowing and cooling thermal beams of atoms and molecules, launching cold atoms from a trap into a fountain, and measuring atomic dipole polarizabilities.Comment: 13 pages, 10 figures. Scheduled for publication in Nov. 1 Phys. Rev.

    Josephson Coupling and Fiske Dynamics in Ferromagnetic Tunnel Junctions

    Full text link
    We report on the fabrication of Nb/AlO_x/Pd_{0.82}Ni_{0.18}/Nb superconductor/insulator/ferromagnetic metal/superconductor (SIFS) Josephson junctions with high critical current densities, large normal resistance times area products, high quality factors, and very good spatial uniformity. For these junctions a transition from 0- to \pi-coupling is observed for a thickness d_F ~ 6 nm of the ferromagnetic Pd_{0.82}Ni_{0.18} interlayer. The magnetic field dependence of the \pi-coupled junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd_{0.82}Ni_{0.18} has an out-of-plane anisotropy and large saturation magnetization, indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes provides information on the junction quality factor and the relevant damping mechanisms up to about 400 GHz. Whereas losses due to quasiparticle tunneling dominate at low frequencies, the damping is dominated by the finite surface resistance of the junction electrodes at high frequencies. High quality factors of up to 30 around 200 GHz have been achieved. Our analysis shows that the fabricated junctions are promising for applications in superconducting quantum circuits or quantum tunneling experiments.Comment: 15 pages, 9 figure

    Geometric global quantum discord

    Full text link
    Geometric quantum discord, proposed by Dakic, Vedral, and Brukner [Phys. Rev. Lett. 105 (2010) 190502], is an important measure for bipartite correlations. In this paper, we generalize it to multipartite states, we call the generalized version geometric global quantum discord (GGQD). We characterize GGQD in different ways, and provide some special states which allow analytical GGQD.Comment: 8 pages,no figure;added a lower bound for GGQD to version
    corecore