2,212 research outputs found

    Wave function mapping in graphene quantum dots with soft confinement

    Full text link
    Using low-temperature scanning tunneling spectroscopy, we map the local density of states (LDOS) of graphene quantum dots supported on Ir(111). Due to a band gap in the projected Ir band structure around the graphene K point, the electronic properties of the QDs are dominantly graphene-like. Indeed, we compare the results favorably with tight binding calculations on the honeycomb lattice based on parameters derived from density functional theory. We find that the interaction with the substrate near the edge of the island gradually opens a gap in the Dirac cone, which implies soft-wall confinement. Interestingly, this confinement results in highly symmetric wave functions. Further influences of the substrate are given by the known moir{\'e} potential and a 10% penetration of an Ir surface resonanceComment: 7 pages, 11 figures, DFT calculations directly showing the origin of soft confinment, correct identification of the state penetrating from Ir(111) into graphen

    Low-Prandtl-number B\'enard-Marangoni convection in a vertical magnetic field

    Full text link
    The effect of a homogeneous magnetic field on surface-tension-driven B\'{e}nard convection is studied by means of direct numerical simulations. The flow is computed in a rectangular domain with periodic horizontal boundary conditions and the free-slip condition on the bottom wall using a pseudospectral Fourier-Chebyshev discretization. Deformations of the free surface are neglected. Two- and three-dimensional flows are computed for either vanishing or small Prandtl number, which are typical of liquid metals. The main focus of the paper is on a qualitative comparison of the flow states with the non-magnetic case, and on the effects associated with the possible near-cancellation of the nonlinear and pressure terms in the momentum equations for two-dimensional rolls. In the three-dimensional case, the transition from a stationary hexagonal pattern at the onset of convection to three-dimensional time-dependent convection is explored by a series of simulations at zero Prandtl number.Comment: 26 pages, 9 figure

    Exact solutions to the focusing nonlinear Schrodinger equation

    Full text link
    A method is given to construct globally analytic (in space and time) exact solutions to the focusing cubic nonlinear Schrodinger equation on the line. An explicit formula and its equivalents are presented to express such exact solutions in a compact form in terms of matrix exponentials. Such exact solutions can alternatively be written explicitly as algebraic combinations of exponential, trigonometric, and polynomial functions of the spatial and temporal coordinates.Comment: 60 pages, 18 figure

    Principle of Maximum Entropy Applied to Rayleigh-B\'enard Convection

    Full text link
    A statistical-mechanical investigation is performed on Rayleigh-B\'enard convection of a dilute classical gas starting from the Boltzmann equation. We first present a microscopic derivation of basic hydrodynamic equations and an expression of entropy appropriate for the convection. This includes an alternative justification for the Oberbeck-Boussinesq approximation. We then calculate entropy change through the convective transition choosing mechanical quantities as independent variables. Above the critical Rayleigh number, the system is found to evolve from the heat-conducting uniform state towards the convective roll state with monotonic increase of entropy on the average. Thus, the principle of maximum entropy proposed for nonequilibrium steady states in a preceding paper is indeed obeyed in this prototype example. The principle also provides a natural explanation for the enhancement of the Nusselt number in convection.Comment: 13 pages, 4 figures; typos corrected; Eq. (66a) corrected to remove a double counting for k⊥=0k_{\perp}=0; Figs. 1-4 replace

    The energy budget in Rayleigh-Benard convection

    Full text link
    It is shown using three series of Rayleigh number simulations of varying aspect ratio AR and Prandtl number Pr that the normalized dissipation at the wall, while significantly greater than 1, approaches a constant dependent upon AR and Pr. It is also found that the peak velocity, not the mean square velocity, obeys the experimental scaling of Ra^{0.5}. The scaling of the mean square velocity is closer to Ra^{0.46}, which is shown to be consistent with experimental measurements and the numerical results for the scaling of Nu and the temperature if there are strong correlations between the velocity and temperature.Comment: 5 pages, 3 figures, new version 13 Mar, 200

    Do mutual funds have consistency in their performance?

    Get PDF
    Using a comprehensive data set of 714 Chinese mutual funds from 2004 to 2015, the study investigates these funds’ performance persistence by using the Capital Asset Pricing model, the Fama-French three-factor model and the Carhart Four-factor model. For persistence analysis, we categorize mutual funds into eight octiles based on their one year lagged performance and then observe their performance for the subsequent 12 months. We also apply Cross-Product Ratio technique to assess the performance persistence in these Chinese funds. The study finds no significant evidence of persis- tence in the performance of the mutual funds. Winner (loser) funds do not continue to be winner (loser) funds in the subsequent time period. These findings suggest that future performance of funds cannot be predicted based on their past performance.info:eu-repo/semantics/publishedVersio

    Geophysical studies with laser-beam detectors of gravitational waves

    Full text link
    The existing high technology laser-beam detectors of gravitational waves may find very useful applications in an unexpected area - geophysics. To make possible the detection of weak gravitational waves in the region of high frequencies of astrophysical interest, ~ 30 - 10^3 Hz, control systems of laser interferometers must permanently monitor, record and compensate much larger external interventions that take place in the region of low frequencies of geophysical interest, ~ 10^{-5} - 3 X 10^{-3} Hz. Such phenomena as tidal perturbations of land and gravity, normal mode oscillations of Earth, oscillations of the inner core of Earth, etc. will inevitably affect the performance of the interferometers and, therefore, the information about them will be stored in the data of control systems. We specifically identify the low-frequency information contained in distances between the interferometer mirrors (deformation of Earth) and angles between the mirrors' suspensions (deviations of local gravity vectors and plumb lines). We show that the access to the angular information may require some modest amendments to the optical scheme of the interferometers, and we suggest the ways of doing that. The detailed evaluation of environmental and instrumental noises indicates that they will not prevent, even if only marginally, the detection of interesting geophysical phenomena. Gravitational-wave instruments seem to be capable of reaching, as a by-product of their continuous operation, very ambitious geophysical goals, such as observation of the Earth's inner core oscillations.Comment: 29 pages including 8 figures, modifications and clarifications in response to referees' comments, to be published in Class. Quant. Gra
    • …
    corecore