534 research outputs found

    Rotational Symmetry Breaking in Sodium Doped Cuprates

    Get PDF
    For reasonable parameters a hole bound to a Na^{+} acceptor in Ca_{2-x}Na_{x}CuO_{2}Cl_{2} has a doubly degenerate ground state whose components can be represented as states with even (odd) reflection symmetry around the x(y) -axes. The conductance pattern for one state is anisotropic as the tip of a tunneling microscope scans above the Cu-O-Cu bonds along the x(y)-axes. This anisotropy is pronounced at lower voltages but is reduced at higher voltages. Qualitative agreement with recent experiments leads us to propose this effect as an explanation of the broken local rotational symmetry.Comment: 10 pages, 4 figure

    Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis.

    Get PDF
    BACKGROUND: An open-label study indicated that selective depletion of B cells with the use of rituximab led to sustained clinical improvements for patients with rheumatoid arthritis. To confirm these observations, we conducted a randomized, double-blind, controlled study. METHODS: We randomly assigned 161 patients who had active rheumatoid arthritis despite treatment with methotrexate to receive one of four treatments: oral methotrexate (> or =10 mg per week) (control); rituximab (1000 mg on days 1 and 15); rituximab plus cyclophosphamide (750 mg on days 3 and 17); or rituximab plus methotrexate. Responses defined according to the criteria of the American College of Rheumatology (ACR) and the European League against Rheumatism (EULAR) were assessed at week 24 (primary analyses) and week 48 (exploratory analyses). RESULTS: At week 24, the proportion of patients with 50 percent improvement in disease symptoms according to the ACR criteria, the primary end point, was significantly greater with the rituximab-methotrexate combination (43 percent, P=0.005) and the rituximab-cyclophosphamide combination (41 percent, P=0.005) than with methotrexate alone (13 percent). In all groups treated with rituximab, a significantly higher proportion of patients had a 20 percent improvement in disease symptoms according to the ACR criteria (65 to 76 percent vs. 38 percent, P< or =0.025) or had EULAR responses (83 to 85 percent vs. 50 percent, P< or =0.004). All ACR responses were maintained at week 48 in the rituximab-methotrexate group. The majority of adverse events occurred with the first rituximab infusion: at 24 weeks, serious infections occurred in one patient (2.5 percent) in the control group and in four patients (3.3 percent) in the rituximab groups. Peripheral-blood immunoglobulin concentrations remained within normal ranges. CONCLUSIONS: In patients with active rheumatoid arthritis despite methotrexate treatment, a single course of two infusions of rituximab, alone or in combination with either cyclophosphamide or continued methotrexate, provided significant improvement in disease symptoms at both weeks 24 and 48

    Detection of minimal residual disease in acute lymphoblastic leukemia

    Get PDF
    Acute lymphoblastic leukemia (ALL) represents the most frequent malignancy in childhood. Last decades brought enormous progress in ALL treatment and in the understanding of ALL biology (see Chapter 1.1 ), but still 20 to 30% of children suffer from relapse and many of them will ultimately die of disease progression. The currently used cytomorphological (microscopic) techniques can only detect 1 to 5% of malignant cells, which is not sufficiently sensitive for identification of patients who are prone to relapse and who might be rescued by treatment intensification. During the past 15 years several approaches have been developed for detection of much lower numbers of malignant cells, i.e. for detection of minimal residual disease (MRD) in various hematopoietic malignancies (see Chapter 1.2). Monitoring of MRD with sensitivities of 1 Q-4 to 1 o-6 (i.e. one malignant cell within the background of 104 to 106 normal cells) has significantly higher prognostic value than conventional cytomorphological techniques and other clinical parameters at diagnosis and is therefore currently implemented into clinical practice in several hematopoietic malignancies, including ALL. In childhood ALL, detection of MRD most frequently relies on patient-specific immunoglobulin (lg) and T-cell receptor (TCR) gene rearrangements as molecular markers for PCR studies. The junctional regions of rearranged lg and TCR genes are unique "fingerprint-like" sequences, which are assumed to be different in each lymphoid cell and thus also in each lymphoid malignancy. They can be easily identified and characterized for instance by using heteroduplex PCR analysis (see Chapter 2.2) and direct sequencing. This thesis aimed at detailed evaluation of lg and TCR gene rearrangements in ALL with regard to the following aspects: -characterization of lg/TCR gene rearrangements patterns in precursor-BALL and T-ALL; - immunobiological differences between malignant and normal lymphoid cells; -stability of clonal lg/TCR gene rearrangements at relapse of ALL; -applicability of lg/TCR gene rearrangements as PCR targets for detection of MRD. Virtually all precursor-B-ALL (96%) have rearranged lg heavy chain (/GH) genes. In most cases (80-90%) this concerns complete VH-DH-JH rearrangements on at least one allele. Incomplete DH-JH rearrangements could be identified in 22% of patients, being the sole /GH gene rearrangements in only 5% of patients (see Chapter 2.3). Most precursor-B-ALL contain lg kappa (/GK) light chain gene rearrangements (30%) or deletions (50%); 20% of precursor-B-ALL cases even have lg lambda (IGL) gene rearrangements. Deletions in the IGK genes are predominantly mediated via the IGK deleting element (Kde) sequence. Such Kde rearrangements occur in 50% of precursor-B-ALL case

    Controlling shot noise in double-barrier magnetic tunnel junctions

    Full text link
    We demonstrate that shot noise in Fe/MgO/Fe/MgO/Fe double-barrier magnetic tunnel junctions is determined by the relative magnetic configuration of the junction and also by the asymmetry of the barriers. The proposed theoretical model, based on sequential tunneling through the system and including spin relaxation, successfully accounts for the experimental observations for bias voltages below 0.5V, where the influence of quantum well states is negligible. A weak enhancement of conductance and shot noise, observed at some voltages (especially above 0.5V), indicates the formation of quantum well states in the middle magnetic layer. The observed results open up new perspectives for a reliable magnetic control of the most fundamental noise in spintronic structures.Comment: 8 pages, 4 figure

    Interaction of a Magnetic Impurity with Strongly Correlated Conduction Electrons

    Full text link
    We consider a magnetic impurity which interacts by hybridization with a system of strongly correlated conduction electrons. The latter are described by a Hubbard Hamiltonian. By means of a canconical transformation the charge degrees of freedom of the magnetic impurity are eliminated. The resulting effective Hamiltonian HeffH_{\rm eff} is investigated and various limiting cases are considered. If the Hubbard interaction UU between the conduction electrons is neglected HeffH_{\rm eff} reduces to a form obtained by the Schrieffer-Wolff transformation, which is essentially the Kondo Hamiltonian. If UU is large and the correlations are strong HeffH_{\rm eff} is changed. One modification concerns the coefficient of the dominant exchange coupling of the magnetic impurity with the nearest lattice site. When the system is hole doped, there is also an antiferromagnetic coupling to the nearest neighbors of that site involving additionally a hole. Furthermore, it is found that the magnetic impurity attracts a hole. In the case of electron doping, double occupancies are repelled by the impurity. In contrast to the hole-doped case, we find no magnetic coupling which additionally involves a doubly occupied site.Comment: 16 pages, Revtex 3.

    Anomalous Spin and Charge Dynamics of the 2D t-J Model at low doping

    Full text link
    We present an exact diagonalization study of the dynamical spin and density correlation function of the 2D t-J model for hole doping < 25%. Both correlation functions show a remarkably regular, but completely different scaling behaviour with both hole concentration and parameter values: the density correlation function is consistent with that of bosons corresponding to the doped holes and condensed into the lowest state of the noninteracting band of width 8t, the spin correlation function is consistent with Fermions in a band of width J. We show that the spin bag picture gives a natural explanation for this unusual behaviour.Comment: Revtex-file, 4 PRB pages + 5 figures attached as uu-encoded ps-files Hardcopies of figures (or the entire manuscript) can also be obtained by e-mailing to: [email protected]

    Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at elapse of childhood precursor-B–ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease

    Get PDF
    Immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements are excellent patient-specific polymerase chain reaction (PCR) targets for detection of minimal residual disease (MRD) in acute lymphoblastic leukemia (ALL), but they might be unstable during the disease course. Therefore, we performed detailed molecula

    Spin and Charge Texture around In-Plane Charge Centers in the CuO_2 planes

    Full text link
    Recent experiments on La_2Cu_{1-x}Li_xO_4 show that although the doped holes remain localized near the substitutional Li impurities, magnetic order is rapidly suppressed. An examination of the spin texture around a bound hole in a CuO_2 plane shows that the formation of a skyrmion is favored in a wide range of parameters, as was previously proposed in the context of Sr doping. The spin texture may be observable by elastic diffuse neutron scattering, and may also have a considerable effect on NMR lineshapes.Comment: 4 pages, postscript file, hardcopy available upon request, to appear in PR

    Green Function Monte Carlo with Stochastic Reconfiguration: an effective remedy for the sign problem disease

    Full text link
    A recent technique, proposed to alleviate the ``sign problem disease'', is discussed in details. As well known the ground state of a given Hamiltonian HH can be obtained by applying the imaginary time propagator e−Hτe^{-H \tau} to a given trial state ψT\psi_T for large imaginary time τ\tau and sampling statistically the propagated state ψτ=e−HτψT \psi_{\tau} = e^{-H \tau} \psi_T. However the so called ``sign problem'' may appear in the simulation and such statistical propagation would be practically impossible without employing some approximation such as the well known ``fixed node'' approximation (FN). This method allows to improve the FN dynamic with a systematic correction scheme. This is possible by the simple requirement that, after a short imaginary time propagation via the FN dynamic, a number pp of correlation functions can be further constrained to be {\em exact} by small perturbation of the FN propagated state, which is free of the sign problem. By iterating this scheme the Monte Carlo average sign, which is almost zero when there is sign problem, remains stable and finite even for large τ\tau. The proposed algorithm is tested against the exact diagonalization results available on finite lattice. It is also shown in few test cases that the dependence of the results upon the few parameters entering the stochastic technique can be very easily controlled, unless for exceptional cases.Comment: 44 pages, RevTeX + 5 encaplulated postscript figure

    Hole dynamics in generalized spin backgrounds in infinite dimensions

    Full text link
    We calculate the dynamical behaviour of a hole in various spin backgrounds in infinite dimensions, where it can be determined exactly. We consider hypercubic lattices with two different types of spin backgrounds. On one hand we study an ensemble of spin configurations with an arbitrary spin probability on each sublattice. This model corresponds to a thermal average over all spin configurations in the presence of staggered or uniform magnetic fields. On the other hand we consider a definite spin state characterized by the angle between the spins on different sublattices, i.e a classical spin system in an external magnetic field. When spin fluctuations are considered, this model describes the physics of unpaired particles in strong coupling superconductors.Comment: Accepted in Phys. Rev. B. 18 pages of text (1 fig. included) in Latex + 2 figures in uuencoded form containing the 2 postscripts (mailed separately
    • …
    corecore