6,430 research outputs found

    A simulation of synthetic aperture radar imaging of ocean waves

    Get PDF
    A simulation of radar imaging of ocean waves with synthetic aperture techniques is presented. The modelling is simplistic from the oceanographic and electromagnetic viewpoint in order to minimize the computational problems, yet reveal some of the physical problems associated with the imaging of moving ocean waves. The model assumes: (1) The radar illuminates a one-dimensional, one harmonic ocean wave. (2) The scattering is assumed to be governed by geometrical optics. (3) The radar is assumed to be down-looking, with Doppler processing (range processing is suppressed due to the one-dimensional nature of the problem). (4) The beamwidth of the antenna (or integration time) is assumed to be sufficiently narrow to restrict the specular points of the peaks and troughs of the wave. The results show that conventional processing of the image gives familiar results if the ocean waves are stationary. When the ocean wave dispersion relationship is satisfied, the image is smeared due to the motion of the specular points over the integration time. In effect, the image of the ocean is transferred to the near field of the synthetic aperture

    The Split Window Microwave Radiometer (SWMR) for hurricane wind speed measurement from space

    Get PDF
    The monitoring of hurricanes demands considerable resources each year by the National Oceanic and Atmospheric Administration. Even with the extensive use of satellite and airborne probing of those storms, there is still much uncertainty involved in predicting landfall for timely evacuation of people subject to the threat. The concept of the Split Window Microwave Radiometer (SWMR) is to add an additional capability of remotely measuring surface winds to hopefully improve prediction capabilities or at least define the severity of the storm while it is far from land. Some of the present science and observational needs are addressed in this report as are remote sensing limitations which impact the design of a minimal system which can be launched into low earth orbit by a low cost launch system. This study has concluded that wind speed and rain rate maps of hurricanes can be generated with an X-Band radiometer system with an antenna whose aperture is 2 m on a side

    NASA sea ice and snow validation plan for the Defense Meteorological Satellite Program special sensor microwave/imager

    Get PDF
    This document addresses the task of developing and executing a plan for validating the algorithm used for initial processing of sea ice data from the Special Sensor Microwave/Imager (SSMI). The document outlines a plan for monitoring the performance of the SSMI, for validating the derived sea ice parameters, and for providing quality data products before distribution to the research community. Because of recent advances in the application of passive microwave remote sensing to snow cover on land, the validation of snow algorithms is also addressed

    Proactive R&D management and information disclosure:ramifications for innovative chemicals companies

    Full text link
    A common view is that investors view steady firm-level R&D investment as evidence of the firm's commitment to R&D-based innovation. However, recent research shows that R&D expenditure volatility is positively related to firm performance, suggesting that higher levels of R&D expenditure volatility indicate effective governance of the R&D function. This paper shows that the relationship between R&D expenditure volatility and firm performance is stronger within firms that have higher levels of information asymmetry between the firm and its investors. This finding suggests that investors interpret R&D expenditure volatility as a good thing, and that this form of information takes on more significance in the absence of better sources of evidence. Innovative chemicals companies may reconsider conventional wisdom suggesting that consistent R&D expenditure conveys an emphasis on R&D-based innovation. Instead, firms can explain to investors that significant changes in R&D expenditure indicate that management is proactively managing R&D projects and combating R&D over investment

    Input admittance of a rectangular waveguide- fed aperture antenna radiating into an inhomogeneous lossy dielectric slab

    Get PDF
    Input admittance of rectangular waveguide antenna radiating into inhomogenous lossy plasma slab and dielectric constant variation

    ESTAR: The Electronically Scanned Thinned Array Radiometer for remote sensing measurement of soil moisture and ocean salinity

    Get PDF
    The product of a working group assembled to help define the science objectives and measurement requirements of a spaceborne L-band microwave radiometer devoted to remote sensing of surface soil moisture and sea surface salinity is presented. Remote sensing in this long-wavelength portion of the microwave spectrum requires large antennas in low-Earth orbit to achieve acceptable spatial resolution. The proposed radiometer, ESTAR, is unique in that it employs aperture synthesis to reduce the antenna area requirements for a space system

    Microwave Remote Sensing of Ocean Surface Wind Speed and Rain Rates over Tropical Storms

    Get PDF
    The value of using narrowly spaced frequencies within a microwave band to measure wind speeds and rain rates over tropical storms with radiometers is reviewed. The technique focuses on results obtained in the overflights of Hurricane Allen during 5 and 8 of August, 1980

    Measuring Geophysical Parameters of the Greenland Ice Sheet using Airborne Radar Altimetry

    Get PDF
    This paper presents radar-altimeter scattering models for each of the diagenetic zones of the Greenland ice sheet. AAFE radar- altimeter waveforms obtained during the 1991 and 1993 NASA multi-sensor airborne altimetry experiments over Greenland reveal that the Ku-band return pulse changes significantly with the different diagenetic zones. These changes are due to varying amounts of surface and volume scattering in the return waveform. In the ablation and soaked zones, where surface scattering dominates the AAFE return, geophysical parameters such as rms surface height and rms surface slope are obtained by fitting the waveforms to a surface-scattering model. Waveforms from the percolation zone show that the sub-surface ice features have a much more significant effect on the return pulse than the surrounding snowpack. Model percolation waveforms, created using a combined surface- and volume-scattering model and an ice-feature distribution obtained during the 1993 field season, agree well with actual AAFE waveforms taken in the same time period. Using a combined surface- and volume-scattering model for the dry-snow-zone return waveforms, the rms surface height and slope and the attenuation coefficient of the snowpack are obtained. These scattering models not only allow geophysical parameters of the ice sheet to be measured but also help in the understanding of satellite radar-altimeter data
    • …
    corecore