6,805 research outputs found

    Matching novel face and voice identity using static and dynamic facial images

    Get PDF
    Research investigating whether faces and voices share common source identity information has offered contradictory results. Accurate face-voice matching is consistently above chance when the facial stimuli are dynamic, but not when the facial stimuli are static. We tested whether procedural differences might help to account for the previous inconsistencies. In Experiment 1, participants completed a sequential two-alternative forced choice matching task. They either heard a voice and then saw two faces or saw a face and then heard two voices. Face – voice matching was above chance when the facial stimuli were dynamic and articulating, but not when they were static. In Experiment 2, we tested whether matching was more accurate when faces and voices were presented simultaneously. The participants saw two face–voice combinations, presented one after the other. They had to decide which combination was the same identity. As in Experiment 1, only dynamic face–voice matching was above chance. In Experiment 3, participants heard a voice and then saw two static faces presented simultaneously. With this procedure, static face–voice matching was above chance. The overall results, analyzed using multilevel modeling, showed that voices and dynamic articulating faces, as well as voices and static faces, share concordant source identity information. It seems, therefore, that above-chance static face–voice matching is sensitive to the experimental procedure employed. In addition, the inconsistencies in previous research might depend on the specific stimulus sets used; our multilevel modeling analyses show that some people look and sound more similar than others

    Searching for a talking face: the effect of degrading the auditory signal

    Get PDF
    Previous research (e.g. McGurk and MacDonald, 1976) suggests that faces and voices are bound automatically, but recent evidence suggests that attention is involved in a task of searching for a talking face (Alsius and Soto-Faraco, 2011). We hypothesised that the processing demands of the stimuli may affect the amount of attentional resources required, and investigated what effect degrading the auditory stimulus had on the time taken to locate a talking face. Twenty participants were presented with between 2 and 4 faces articulating different sentences, and had to decide which of these faces matched the sentence that they heard. The results showed that in the least demanding auditory condition (clear speech in quiet), search times did not significantly increase when the number of faces increased. However, when speech was presented in background noise or was processed to simulate the information provided by a cochlear implant, search times increased as the number of faces increased. Thus, it seems that the amount of attentional resources required vary according to the processing demands of the auditory stimuli, and when processing load is increased then faces need to be individually attended to in order to complete the task. Based on these results we would expect cochlear-implant users to find the task of locating a talking face more attentionally demanding than normal hearing listeners

    Thermal cycling effects on polyimide films for multilayer applications

    Get PDF

    The galaxy's 157 micron (C 2) emission: Observations by means of a spectroscopic lunar-occultation technique

    Get PDF
    Galactic (C II) 157 micron, fine-structure emission was estimated. At a Galactic longitude of 8 deg, the peak power observed in a 7' x 7' field is approx. 5 x 10 to the -9 Watt. The method used to detect this radiation involved chopping against the cold side of the Moon

    Highly ejected J = 16 to 15 rotational transitions of CO at 162.8 mirons in the Orion cloud

    Get PDF
    The first observations of the J = 16 to J = 15, 162.8 microns transition of CO from an astronomical source are reported. Measurements were carried out on the Kleinmann-Low Nebula. The intensity observed is in good agreement with predictions from previous spectroscopic work carried out in the far infrared. The observation strengthens the previous claim that approximately 1.5 solar mass of molecular hydrogen is heated to a temperature above 750 K within the shocked region in the Nebula. Upper limits to he OH intensity in the F2 (2Pi 1/2) transitions J = 3/2 to J = 1/2 which fall into two groups centered respectively at 163.12 and 163.40 are presented

    Observations of the 145.5 micron (OI) emission line in the Orion nebula

    Get PDF
    A first set of observations of the (OI) 3P to 3P1 (145.5 micron) transition was obtained. The line was observed both in a beam centered on the Trapezium, and in a 7 times wider beam encompassing most of the Orion Nebula. A wide beam map of the region was constructed which shows that most of the emission is confined to the central regions of the nebula. These observations may be compared with reported measurement of the 3P1 to 3P2 (63.2 micron) transition in Orion and are consistent with optically thin emission in the 145.5 micron line and self-adsorbed 63.2 micron emission lines. Mechanisms are discussed for the excitation of neutral oxygen. It is included that much of the observed emission originates in the thin, radio-recombination-line-emitting CII/HI envelope bordering on the HII region

    Individual growth rates and movement of juvenile white shrimp (Litopenaeus setiferus) in a tidal marsh nursery

    Get PDF
    We measured growth and movements of individually marked free-ranging juvenile white shrimp (Litopenaeus setiferus) in tidal creek subsystems of the Duplin River, Sapelo Island, Georgia. Over a period of two years, 15,974 juvenile shrimp (40−80 mm TL) were marked internally with uniquely coded microwire tags and released in the shallow upper reaches of four salt marsh tidal creeks. Subsequent samples were taken every 3−6 days from channel segments arranged at 200-m intervals along transects extending from the upper to lower reach of each tidal creek. These collections included 201,384 juvenile shrimp, of which 184 were marked recaptures. Recaptured shrimp were at large an average of 3−4 weeks (range: 2−99 days) and were recovered a mean distance of 0.30) but varied significantly during the season, tending to be greater in July than November. Growth rates were size-dependent, and temporal changes in size distributions rather than temporal variation in physical environmental factors may have accounted for seasonal differences in growth. Growth rates differed between creeks in 1999 (t-test, P0.5). We suggest that spatial variation in landscape structure associated with access to intertidal resources may have accounted for this apparent interannual difference in growth response

    The Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit

    Full text link
    Gravitomagnetism--a motional coupling of matter analogous to the Lorentz force in electromagnetism--has observable consequences for any scenario involving differing mass currents. Examples include gyroscopes located near a rotating massive body, and the interaction of two orbiting bodies. In the former case, the resulting precession of the gyroscope is often called ``frame dragging,'' and is the principal measurement sought by the Gravity Probe-B experiment. The latter case is realized in the earth-moon system, and the effect has in fact been confirmed via lunar laser ranging (LLR) to approximately 0.1% accuracy--better than the anticipated accuracy of the Gravity-Probe-B result. This paper shows the connnection between these seemingly disparate phenomena by employing the same gravitomagnetic term in the equation of motion to obtain both gyroscopic precession and modification of the lunar orbit. Since lunar ranging currently provides a part in a thousand fit to the gravitomagnetic contributions to the lunar orbit, this feature of post-Newtonian gravity is not adjustable to fit any anomalous result beyond the 0.1% level from Gravity Probe-B without disturbing the existing fit of theory to the 36 years of LLR data.Comment: 4 pages; accepted for publication in Physical Review Letter
    • …
    corecore