376 research outputs found

    A curated online resource for SOX10 and pigment cell molecular genetic pathways

    Get PDF
    We describe the creation of a specialized web-accessible database named the Pigment Cell Gene Resource, which contains information on the genetic pathways that regulate pigment cell development and function. This manually curated database is comprised of two sections, an annotated literature section and an interactive transcriptional network diagram. Initially, this database focuses on the transcription factor SOX10, which has essential roles in pigment cell development and function, but the database has been designed with the capacity to expand in the future, allowing inclusion of many more pigmentation genes

    Mannosylation in C andida albicans : role in cell wall function and immune recognition

    Get PDF
    The fungal cell wall is a dynamic organelle required for cell shape, protection against the environment and, in pathogenic species, recognition by the innate immune system. The outer layer of the cell wall is comprised of glycosylated mannoproteins with the majority of these post-translational modifications being the addition of O- and N-linked mannosides. These polysaccharides are exposed on the outer surface of the fungal cell wall and are, therefore, the first point of contact between the fungus and the host immune system. This review focuses on O- and N-linked mannan biosynthesis in the fungal pathogen Candida albicans and highlights new insights gained from the characterization of mannosylation mutants into the role of these cell wall components in host-fungus interactions. In addition, we discuss the use of fungal mannan as a diagnostic marker of fungal disease

    Genetic Background Strongly Modifies the Severity of Symptoms of Hirschsprung Disease, but Not Hearing Loss in Rats Carrying Ednrbsl Mutations

    Get PDF
    Hirschsprung disease (HSCR) is thought to result as a consequence of multiple gene interactions that modulate the ability of enteric neural crest cells to populate the developing gut. However, it remains unknown whether the single complete deletion of important HSCR-associated genes is sufficient to result in HSCR disease. In this study, we found that the null mutation of the Ednrb gene, thought indispensable for enteric neuron development, is insufficient to result in HSCR disease when bred onto a different genetic background in rats carrying Ednrbsl mutations. Moreover, we found that this mutation results in serious congenital sensorineural deafness, and these strains may be used as ideal models of Waardenburg Syndrome Type 4 (WS4). Furthermore, we evaluated how the same changed genetic background modifies three features of WS4 syndrome, aganglionosis, hearing loss, and pigment disorder in these congenic strains. We found that the same genetic background markedly changed the aganglionosis, but resulted in only slight changes to hearing loss and pigment disorder. This provided the important evidence, in support of previous studies, that different lineages of neural crest-derived cells migrating along with various pathways are regulated by different signal molecules. This study will help us to better understand complicated diseases such as HSCR and WS4 syndrome
    corecore