48 research outputs found
NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers
Enantiomeric excess of chiral compounds is a key parameter that determines their activity or therapeutic action. The current paradigm for rapid measurement of enantiomeric excess using NMR is based on the formation of diastereomeric complexes between the chiral analyte and a chiral resolving agent, leading to (at least) two species with no symmetry relationship. Here we report an effective method of enantiomeric excess determination using a symmetrical achiral molecule as the resolving agent, which is based on the complexation with analyte (in the fast exchange regime) without the formation of diastereomers. The use of N,N′-disubstituted oxoporphyrinogen as the resolving agent makes this novel method extremely versatile, and appropriate for various chiral analytes including carboxylic acids, esters, alcohols and protected amino acids using the same achiral molecule. The model of sensing mechanism exhibits a fundamental linear response between enantiomeric excess and the observed magnitude of induced chemical shift non-equivalence in the 1H NMR spectra
High-speed fixed-target serial virus crystallography
We report a method for serial X-ray crystallography at X-ray free-electron lasers (XFELs), which allows for full use of the current 120-Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micropatterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery, we were able to determine the crystal structures of the picornavirus bovine enterovirus 2 (BEV2) and the cytoplasmic polyhedrosis virus type 18 polyhedrin, with total data collection times of less than 14 and 10 min, respectively. Our method requires only micrograms of sample and should therefore broaden the applicability of serial femtosecond crystallography to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for most efficient use of the limited beam time available at XFELs and should enable a substantial increase in sample throughput at these facilities
Investigation into the annotation of protocol sequencing steps in the sequence read archive
BACKGROUND: The workflow for the production of high-throughput sequencing data from nucleic acid samples is complex. There are a series of protocol steps to be followed in the preparation of samples for next-generation sequencing. The quantification of bias in a number of protocol steps, namely DNA fractionation, blunting, phosphorylation, adapter ligation and library enrichment, remains to be determined. RESULTS: We examined the experimental metadata of the public repository Sequence Read Archive (SRA) in order to ascertain the level of annotation of important sequencing steps in submissions to the database. Using SQL relational database queries (using the SRAdb SQLite database generated by the Bioconductor consortium) to search for keywords commonly occurring in key preparatory protocol steps partitioned over studies, we found that 7.10%, 5.84% and 7.57% of all records (fragmentation, ligation and enrichment, respectively), had at least one keyword corresponding to one of the three protocol steps. Only 4.06% of all records, partitioned over studies, had keywords for all three steps in the protocol (5.58% of all SRA records). CONCLUSIONS: The current level of annotation in the SRA inhibits systematic studies of bias due to these protocol steps. Downstream from this, meta-analyses and comparative studies based on these data will have a source of bias that cannot be quantified at present
Genomic landscape and clonal architecture of mouse oral squamous cell carcinomas dictate tumour ecology.
To establish whether 4-nitroquinoline N-oxide-induced carcinogenesis mirrors the heterogeneity of human oral squamous cell carcinoma (OSCC), we have performed genomic analysis of mouse tongue lesions. The mutational signatures of human and mouse OSCC overlap extensively. Mutational burden is higher in moderate dysplasias and invasive SCCs than in hyperplasias and mild dysplasias, although mutations in p53, Notch1 and Fat1 occur in early lesions. Laminin-α3 mutations are associated with tumour invasiveness and Notch1 mutant tumours have an increased immune infiltrate. Computational modelling of clonal dynamics indicates that high genetic heterogeneity may be a feature of those mild dysplasias that are likely to progress to more aggressive tumours. These studies provide a foundation for exploring OSCC evolution, heterogeneity and progression
Modeling Airlift Operations for Humanitarian Aid and Disaster Relief to Support Acquisition Decision-Making
In a fiscally constrained environment, it is crucial that both equipment manufacturers and defence invest in technology that shows marked operational improvement. A priori identification of cost-benefit at the early acquisition stage is often limited and incomplete, leading to poor value propositions. This conundrum motivates the need to develop a method to evaluate technologies such as levels of autonomy, stealth capability, improved engines, etc. and make tradeoffs against operational measures of performance and effectiveness (MOP/Es) rather than solely against vehicle performance characteristics. The objective of this study is to create an environment in which those trades against MOEs could be performed rapidly to inform technology investment and acquisition decision-making. This environment is built on top of representative models of a discrete event simulation of disaster relief airlift operations to compare technology modifications or vehicle acquisition options rapidly against operational measures of effectiveness