656 research outputs found
Granular superconductivity at room temperature in bulk highly oriented pyrolytic graphite samples
We have studied the magnetic response of two bulk highly oriented pyrolytic
graphite (HOPG) samples with different internal microstructure. For the sample
with well defined interfaces, parallel to the graphene layers, the temperature
and magnetic field hysteresis are similar to those found recently in
water-treated graphite powders. The observed behavior indicates the existence
of granular superconductivity above room temperature in agreement with previous
reports in other graphite samples. The granular superconductivity behavior is
observed only for fields normal to the embedded interfaces, whereas no relevant
hysteresis in temperature or field is observed for fields applied parallel to
them. Increasing the temperature above K changes irreversibly the
hysteretic response of the sample.Comment: 36 pages with 13 figure
Minimal Seesaw as an Ultraviolet Insensitive Cure for the Problems of Anomaly Mediation
We show that an intermediate scale supersymmetric left-right seesaw scenario
with automatic R-parity conservation can cure the problem of tachyonic slepton
masses that arises when supersymmetry is broken by anomaly mediation, while
preserving ultraviolet insensitivity. The reason for this is the existence of
light B - L = 2 higgses with yukawa couplings to the charged leptons. We find
these theories to have distinct predictions compared to the usual mSUGRA and
gauge mediated models as well as the minimal AMSB models. Such predictions
include a condensed gaugino mass spectrum and possibly a correspondingly
condensed sfermion spectrum.Comment: 19 pages, 1 figur
The role of hydrogen in room-temperature ferromagnetism at graphite surfaces
We present a x-ray dichroism study of graphite surfaces that addresses the
origin and magnitude of ferromagnetism in metal-free carbon. We find that, in
addition to carbon states, also hydrogen-mediated electronic states
exhibit a net spin polarization with significant magnetic remanence at room
temperature. The observed magnetism is restricted to the top 10 nm of
the irradiated sample where the actual magnetization reaches emu/g
at room temperature. We prove that the ferromagnetism found in metal-free
untreated graphite is intrinsic and has a similar origin as the one found in
proton bombarded graphite.Comment: 10 pages, 5 figures, 1 table, submitted to New Journal of Physic
Proton-induced magnetic order in carbon: SQUID measurements
In this work we have studied systematically the changes in the magnetic
behavior of highly oriented pyrolytic graphite (HOPG) samples after proton
irradiation in the MeV energy range. Superconducting quantum interferometer
device (SQUID) results obtained from samples with thousands of localized spots
of micrometer size as well on samples irradiated with a broad beam confirm
previously reported results. Both, the para- and ferromagnetic contributions
depend strongly on the irradiation details. The results indicate that the
magnetic moment at saturation of spots of micrometer size is of the order of
emu.Comment: Invited contribution at ICACS2006 to be published in Nucl. Instr. and
Meth. B. 8 pages and 6 figure
A combined first and second order variational approach for image reconstruction
In this paper we study a variational problem in the space of functions of
bounded Hessian. Our model constitutes a straightforward higher-order extension
of the well known ROF functional (total variation minimisation) to which we add
a non-smooth second order regulariser. It combines convex functions of the
total variation and the total variation of the first derivatives. In what
follows, we prove existence and uniqueness of minimisers of the combined model
and present the numerical solution of the corresponding discretised problem by
employing the split Bregman method. The paper is furnished with applications of
our model to image denoising, deblurring as well as image inpainting. The
obtained numerical results are compared with results obtained from total
generalised variation (TGV), infimal convolution and Euler's elastica, three
other state of the art higher-order models. The numerical discussion confirms
that the proposed higher-order model competes with models of its kind in
avoiding the creation of undesirable artifacts and blocky-like structures in
the reconstructed images -- a known disadvantage of the ROF model -- while
being simple and efficiently numerically solvable.Comment: 34 pages, 89 figure
Seesaw Extended MSSM and Anomaly Mediation without Tachyonic Sleptons
Superconformal anomalies provide an elegant and economical way to understand
the soft breaking parameters in SUSY models; however, implementing them leads
to the several undesirable features including: tachyonic sleptons and
electroweak symmetry breaking problems in both the MSSM and the NMSSM. Since
these two theories also have the additonal problem of massless neutrinos, we
have reconsidered the AMSB problems in a class of models that extends the NMSSM
to explain small neutrino masses via the seesaw mechanism. In a recent paper,
we showed that for a class of minimal left-right extensions, a built-in
mechanism exists which naturally solves the tachyonic slepton problem and
provides new alternatives to the MSSM that also have automatic R-parity
conservation. In this paper, we discuss how electroweak symmetry breaking
arises in this model through an NMSSM-like low energy theory with a singlet
VEV, induced by the structure of the left-right extension and of the right
magnitude. We then study the phenomenological issues and find: the LSP is an
Higgsino-wino mix, new phenomenology for chargino decays to the LSP, degenerate
same generation sleptons and a potential for a mild squark-slepton degeneracy.
We also discuss possible collider signatures and the feasibility of dark matter
in this model.Comment: 40 pages, 10 figures, 5 tables; v3: Added addendum and three new
references; v4: Added reference that was inadvertently omitte
Induced Magnetic Ordering by Proton Irradiation in Graphite
We provide evidence that proton irradiation of energy 2.25 MeV on
highly-oriented pyrolytic graphite samples triggers ferro- or ferrimagnetism.
Measurements performed with a superconducting quantum interferometer device
(SQUID) and magnetic force microscopy (MFM) reveal that the magnetic ordering
is stable at room temperature.Comment: 3 Figure
- …
