4,864 research outputs found

    Deformations of Fuchsian Systems of Linear Differential Equations and the Schlesinger System

    Full text link
    We consider holomorphic deformations of Fuchsian systems parameterized by the pole loci. It is well known that, in the case when the residue matrices are non-resonant, such a deformation is isomonodromic if and only if the residue matrices satisfy the Schlesinger system with respect to the parameter. Without the non-resonance condition this result fails: there exist non-Schlesinger isomonodromic deformations. In the present article we introduce the class of the so-called isoprincipal deformations of Fuchsian systems. Every isoprincipal deformation is also an isomonodromic one. In general, the class of the isomonodromic deformations is much richer than the class of the isoprincipal deformations, but in the non-resonant case these classes coincide. We prove that a deformation is isoprincipal if and only if the residue matrices satisfy the Schlesinger system. This theorem holds in the general case, without any assumptions on the spectra of the residue matrices of the deformation. An explicit example illustrating isomonodromic deformations, which are neither isoprincipal nor meromorphic with respect to the parameter, is also given

    Quantum-classical transition and quantum activation of ratchet currents in the parameter space

    Full text link
    The quantum ratchet current is studied in the parameter space of the dissipative kicked rotor model coupled to a zero temperature quantum environment. We show that vacuum fluctuations blur the generic isoperiodic stable structures found in the classical case. Such structures tend to survive when a measure of statistical dependence between the quantum and classical currents are displayed in the parameter space. In addition, we show that quantum fluctuations can be used to overcome transport barriers in the phase space. Related quantum ratchet current activation regions are spotted in the parameter space. Results are discussed {based on quantum, semiclassical and classical calculations. While the semiclassical dynamics involves vacuum fluctuations, the classical map is driven by thermal noise.Comment: 6 pages, 3 figure

    Soft Manifold Dynamics Behind Negative Thermal Expansion

    Full text link
    Minimal models are developed to examine the origin of large negative thermal expansion (NTE) in under-constrained systems. The dynamics of these models reveals how underconstraint can organize a thermodynamically extensive manifold of low-energy modes which not only drives NTE but extends across the Brillioun zone. Mixing of twist and translation in the eigenvectors of these modes, for which in ZrW2O8 there is evidence from infrared and neutron scattering measurements, emerges naturally in our model as a signature of the dynamics of underconstraint.Comment: 5 pages, 3 figure

    Ten Years of Solar Change as Monitored by SBUV and SBUV/2

    Get PDF
    Observations of the Sun by the Solar Backscatter Ultraviolet (SBUV) instrument aboard Nimbus 7 and the SBUV/2 instrument aboard NOAA-9 reveal variations in the solar irradiance from 1978, to 1988. The maximum to minimum solar change estimated from the Heath and Schlesinger Mg index and wavelength scaling factors is about 4 percent from 210 to 260 nm and 8 percent for 180 to 210 nm; direct measurements of the solar change give values of 1 to 3 percent and 5 to 7 percent, respectively, for the same wavelength range. Solar irradiances were high from the start of observations, late in 1978, until 1983, declined until early 1985, remained approximately constant until mid-1987, and then began to rise. Peak-to-peak 27-day rotational modulation amplitudes were as large as 6 percent at solar maximum and 1 to 2 percent at solar minimum. During occasional intervals of the 1979 to 1983 maximum and again during 1988, the dominant rotational modulation period was 13.5 days. Measurements near 200 to 205 nm show the same rotational modulation behavior but cannot be used to track long-term changes in the Sun because of uncertainties in the characterization of long-term instrument sensitivity changes

    A status report on the analysis of the NOAA-9 SBUV/2 sweep mode solar irradiance data

    Get PDF
    Monitoring of the near ultraviolet (UV) solar irradiance is important because the solar UV radiation is the primary energy source in the upper atmosphere. The solar irradiance at wavelengths shortward of roughly 300 nm heats the stratosphere via photodissociation of ozone in the Hartley bands. Shortward of 242 nm the solar UV flux photodissociates O2, which is then available for ozone formation. Upper stratosphere ozone variations coincident with UV solar rotational modulation have been previously reported (Gille et al., 1984). Clearly, short and long term solar irradiance observations are necessary to separate solar-forced ozone variations from anthropogenic changes. The SBUV/2 instrument onboard the NOAA-9 spacecraft has made daily measurements of the solar spectral irradiance at approximately 0.15 nm intervals in the wavelength region 160-405 nm at 1 nm resolution since March 1985. These data are not needed to determine the terrestrial ozone overburden or altitude profile, and hence are not utilized in the NOAA Operational Ozone Product System (OOPS). Therefore, assisted by the ST System Corporation, NASA has developed a scientific software system to process the solar sweep mode data from the NOAA-9 instrument. This software will also be used to process the sweep mode solar irradiance data from the NOAA-11 and later SBUV/2 instruments. An overview of the software system and a brief discussion of analysis findings to date are provided. Several outstanding concerns/problems are also presented

    Body mass index, abdominal fatness, fat mass and the risk of atrial fibrillation: a systematic review and dose–response meta-analysis of prospective studies

    Get PDF
    Different adiposity measures have been associ- ated with increased risk of atrial fibrillation, however, results have previously only been summarized for BMI. We therefore conducted a systematic review and meta- analysis of prospective studies to clarify the association between different adiposity measures and risk of atrial fibrillation. PubMed and Embase databases were searched up to October 24th 2016. Summary relative risks (RRs) were calculated using random effects models. Twenty-nine unique prospective studies (32 publications) were included. Twenty-five studies (83,006 cases, 2,405,381 participants) were included in the analysis of BMI and atrial fibrillation. The summary RR was 1.28 (95% confidence interval: 1.20–1.38, I 2 = 97%) per 5 unit increment in BMI, 1.18 (95% CI: 1.12–1.25, I 2 = 73%, n = 5) and 1.32 (95% CI: 1.16–1.51, I 2 = 91%, n = 3) per 10 cm increase in waist and hip circumference, respectively, 1.09 (95% CI: 1.02–1.16, I 2 = 44%, n = 4) per 0.1 unit increase in waist- to-hip ratio, 1.09 (95% CI: 1.02–1.16, I 2 = 94%, n = 4) per 5 kg increase in fat mass, 1.10 (95% CI: 0.92–1.33, I 2 = 90%, n = 3) per 10% increase in fat percentage, 1.10 (95% CI: 1.08–1.13, I 2 = 74%, n = 10) per 5 kg increase in weight, and 1.08 (95% CI: 0.97–1.19, I 2 = 86%, n = 2) per 5% increase in weight gain. The association between BMI and atrial fibrillation was non- linear, p nonlinearity \ 0.0001, with a stronger association at higher BMI levels, however, increased risk was observed even at a BMI of 22–24 compared to 20. In conclusion, general and abdominal adiposity and higher body fat mass increase the risk of atrial fibrillation

    Professionalisation of sport federations - a multi-level framework for analysing forms, causes and consequences

    Get PDF
    Research question: International and national sport federations as well as their member organisations are key actors within the sport system and have a wide range of relationships outside the sport system (e.g. with the state, sponsors, and the media). They are currently facing major challenges such as growing competition in top-level sports, democratisation of sports with 'sports for all' and sports as the answer to social problems. In this context, professionalising sport organisations seems to be an appropriate strategy to face these challenges and current problems. We define the professionalisation of sport organisations as an organisational process of transformation leading towards organisational rationalisation, efficiency and business-like management. This has led to a profound organisational change, particularly within sport federations, characterised by the strengthening of institutional management (managerialism) and the implementation of efficiency-based management instruments and paid staff. Research methods: The goal of this article is to review the current international literature and establish a global understanding of and theoretical framework for analysing why and how sport organisations professionalise and what consequences this may have. Results and findings: Our multi-level approach based on the social theory of action integrates the current concepts for analysing professionalisation in sport federations. We specify the framework for the following research perspectives: (1) forms, (2) causes and (3) consequences, and discuss the reciprocal relations between sport federations and their member organisations in this context. Implications: Finally, we work out a research agenda and derive general methodological consequences for the investigation of professionalisation processes in sport organisations
    corecore