30 research outputs found

    Pareto Autonomous Local Search

    Get PDF
    This paper presents a study for the dynamic selection of operators in a local search process. The main purpose is to propose a generic autonomous local search method which manages operator selection from a set of available operators, built on neighborhood relations and neighbor selection functions, using the concept of Pareto dominance with respect to quality and diversity. The latter is measured using two different metrics. This control method is implemented using the Comet language in order to be easily introduced in various constraint local search algorithms. Focusing on permutation-based problems, experimental results are provided for the QAP and ATSP to assess the method’s effectiveness

    Ownership and control in a competitive industry

    Get PDF
    We study a differentiated product market in which an investor initially owns a controlling stake in one of two competing firms and may acquire a non-controlling or a controlling stake in a competitor, either directly using her own assets, or indirectly via the controlled firm. While industry profits are maximized within a symmetric two product monopoly, the investor attains this only in exceptional cases. Instead, she sometimes acquires a noncontrolling stake. Or she invests asymmetrically rather than pursuing a full takeover if she acquires a controlling one. Generally, she invests indirectly if she only wants to affect the product market outcome, and directly if acquiring shares is profitable per se. --differentiated products,separation of ownership and control,private benefits of control

    Local search for the surgery admission planning problem

    Get PDF
    We present a model for the surgery admission planning problem, and a meta-heuristic algorithm for solving it. The problem involves assigning operating rooms and dates to a set of elective surgeries, as well as scheduling the surgeries of each day and room. Simultaneously, a schedule is created for each surgeon to avoid double bookings. The presented algorithm uses simple Relocate and Two-Exchange neighbourhoods, governed by an iterated local search framework. The problem's search space associated with these move operators is analysed for three typical fitness surfaces, representing different compromises between patient waiting time, surgeon overtime, and waiting time for children in the morning on the day of surgery. The analysis shows that for the same problem instances, the different objectives give fitness surfaces with quite different characteristics. We present computational results for a set of benchmarks that are based on the admission planning problem in a chosen Norwegian hospital
    corecore