1,343 research outputs found
Relationship between resistivity and specific heat in a canonical non-magnetic heavy fermion alloy system: UPt_5-xAu_x
UPt_(5-x)Au_x alloys form in a single crystal structure, cubic AuBe_5-type,
over a wide range of concentrations from x = 0 to at least x = 2.5. All
investigated alloys, with an exception for x = 2.5, were non-magnetic. Their
electronic specific heat coefficient varies from about 60 (x = 2) to
about 700 mJ/mol K^2 (x = 1). The electrical resistivity for all alloys has a
Fermi-liquid-like temperature variation, \rho = \rho_o + AT^2, in the limit of
T -> 0 K. The coefficient A is strongly enhanced in the heavy-fermion regime in
comparison with normal and transition metals. It changes from about 0.01 (x =
0) to over 2 micro-ohm cm/K^2 (x = 1). A/\gamma^2, which has been postulated to
have a universal value for heavy-fermions, varies from about 10^-6 (x = 0, 0.5)
to 10^-5 micro-ohm cm (mol K/mJ)^2 (x > 1.1), thus from a value typical of
transition metals to that found for some other heavy-fermion metals. This ratio
is unaffected, or only weakly affected, by chemical or crystallographic
disorder. It correlates with the paramagnetic Curie-Weiss temperature of the
high temperature magnetic susceptibility.Comment: 5 pages, 5 eps figures, RevTe
Unusual behaviours and Impurity Effects in the Noncentrosymmetric Superconductor CePt3Si
We report a study in which the effect of defects/impurities, growth process,
off-stoichiometry, and presence of impurity phases on the superconducting
properties of noncentrosymmetric CePt3Si is analysed by means of the
temperature dependence of the magnetic penetration depth. We found that the
linear low-temperature response of the penetration depth -indicative of line
nodes in this material- is robust regarding sample quality, in contrast to what
is observed in unconventional centrosymmetric superconductors with line nodes.
We discuss evidence that the broadness of the superconducting transition may be
intrinsic, though not implying the existence of a second superconducting
transition. The superconducting transition temperature systematically occurs
around 0.75 K in our measurements, in agreement with resistivity and ac
magnetic susceptibility data but in conflict with specific heat, thermal
conductivity and NMR data in which Tc is about 0.5 K. Random defects do not
change the linear low-temperature dependence of the penetration depth in the
heavy-fermion CePt3Si with line nodes, as they do in unconventional
centrosymmetric superconductors with line nodes.Comment: To appear in New Journal of Physic
Evolution of Quantum Criticality in CeNi_{9-x}Cu_xGe_4
Crystal structure, specific heat, thermal expansion, magnetic susceptibility
and electrical resistivity studies of the heavy fermion system
CeNi_{9-x}Cu_xGe_4 (0 <= x <= 1) reveal a continuous tuning of the ground state
by Ni/Cu substitution from an effectively fourfold degenerate non-magnetic
Kondo ground state of CeNi_9Ge_4 (with pronounced non-Fermi-liquid features)
towards a magnetically ordered, effectively twofold degenerate ground state in
CeNi_8CuGe_4 with T_N = 175 +- 5 mK. Quantum critical behavior, C/T ~ \chi ~
-ln(T), is observed for x about 0.4. Hitherto, CeNi_{9-x}Cu_xGe_4 represents
the first system where a substitution-driven quantum phase transition is
connected not only with changes of the relative strength of Kondo effect and
RKKY interaction, but also with a reduction of the effective crystal field
ground state degeneracy.Comment: 15 pages, 9 figure
AC/DC Susceptibility of the Heavy-Fermion Superconductor CePt3Si under Pressure
We have investigated the pressure dependence of ac and dc susceptibilities of
the heavy-fermion superconductor CePt3Si (Tc= 0.75 K) that coexists with
antiferromagnetism (TN = 2.2 K). As hydrostatic pressure is increased, Tc first
decreases rapidly, then rather slowly near the critical pressure Pc = 0.6 GPa
and shows a stronger decrease again at higher pressures, where Pc is the
pressure at which TN becomes zero. A transition width and a difference in the
two transition temperatures defined in the form of structures in the
out-of-phase component of ac susceptibilities also become small near Pc,
indicating that a double transition observed in CePt3Si is caused by some
inhomogeneous property in the sample that leads to a spatial variation of local
pressure. A sudden increase in the Meissner fraction above Pc suggests the
influence of antiferromagnetism on superconductivity.Comment: 4 pages with 5 figures. This paper will be published in J. Phys. Soc.
Jp
Catalytic Kinetic Resolution of a Dynamic Racemate: Highly Stereoselective β-Lactone Formation by N-Heterocyclic Carbene Catalysis
This study describes the combined experimental and computational elucidation of the mechanism and origins of stereoselectivities in the NHC-catalyzed dynamic kinetic resolution (DKR) of α-substituted-β-ketoesters. Density functional theory computations reveal that the NHC-catalyzed DKR proceeds by two mechanisms, depending on the stereochemistry around the forming bond: 1) a concerted, asynchronous formal (2+2) aldol-lactonization process, or 2) a stepwise spiro-lactonization mechanism where the alkoxide is trapped by the NHC-catalyst. These mechanisms contrast significantly from mechanisms found and postulated in other related transformations. Conjugative stabilization of the electrophile and non-classical hydrogen bonds are key in controlling the stereoselectivity. This reaction constitutes an interesting class of DKRs in which the catalyst is responsible for the kinetic resolution to selectively and irreversibly capture an enantiomer of a substrate undergoing rapid racemization with the help of an exogenous base
Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching
We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed
Contralateral manual compensation for velocity-dependent force perturbations
It is not yet clear how the temporal structure of a voluntary action is coded allowing coordinated bimanual responses. This study focuses on the adaptation to and compensation for a force profile presented to one stationary arm which is proportional to the velocity of the other moving arm. We hypothesised that subjects would exhibit predictive coordinative responses which would co-vary with the state of the moving arm. Our null hypothesis is that they develop a time-dependent template of forces appropriate to compensate for the imposed perturbation. Subjects were trained to make 500 ms duration reaching movements with their dominant right arm to a visual target. A force generated with a robotic arm that was proportional to the velocity of the moving arm and perpendicular to movement direction acted on their stationary left hand, either at the same time as the movement or delayed by 250 or 500 ms. Subjects rapidly learnt to minimise the final end-point error. In the delay conditions, the left hand moved in advance of the onset of the perturbing force. In test conditions with faster or slower movement of the right hand, the predictive actions of the left hand co-varied with movement speed. Compensation for movement-related forces appeared to be predictive but not based on an accurate force profile that was equal and opposite to the imposed perturbatio
Poly-MTO, {(CH_3)_{0.92} Re O_3}_\infty, a Conducting Two-Dimensional Organometallic Oxide
Polymeric methyltrioxorhenium, {(CH_{3})_{0.92}ReO_{3}}_{\infty} (poly-MTO),
is the first member of a new class of organometallic hybrids which adopts the
structural pattern and physical properties of classical perovskites in two
dimensions (2D). We demonstrate how the electronic structure of poly-MTO can be
tailored by intercalation of organic donor molecules, such as
tetrathiafulvalene (TTF) or bis-(ethylendithio)-tetrathiafulvalene (BEDT-TTF),
and by the inorganic acceptor SbF. Integration of donor molecules leads to
a more insulating behavior of poly-MTO, whereas SbF insertion does not
cause any significant change in the resistivity. The resistivity data of pure
poly-MTO is remarkably well described by a two-dimensional electron system.
Below 38 K an unusual resistivity behavior, similar to that found in doped
cuprates, is observed: The resistivity initially increases approximately as
ln) before it changes into a dependence below 2 K.
As an explanation we suggest a crossover from purely two-dimensional
charge-carrier diffusion within the \{ReO\} planes at high
temperatures to three-dimensional diffusion at low temperatures in a
disorder-enhanced electron-electron interaction scenario (Altshuler-Aronov
correction). Furthermore, a linear positive magnetoresistance was found in the
insulating regime, which is caused by spatial localization of itinerant
electrons at some of the Re atoms, which formally adopt a electronic
configuration. X-ray diffraction, IR- and ESR-studies, temperature dependent
magnetization and specific heat measurements in various magnetic fields suggest
that the electronic structure of poly-MTO can safely be approximated by a
purely 2D conductor.Comment: 15 pages, 16 figures, 2 table
Transport properties of moderately disordered UCuPd
We present a detailed study on the (magneto)transport properties of as-cast
and heat treated material UCuPd. We find a pronounced sample dependence of
the resistivity of as-cast samples, and reproduce the annealing
dependence of . In our study of the Hall effect we determine a metallic
carrier density for all samples, and a temperature dependence of the Hall
constant which is inconsistent with the Skew scattering prediction. The
magnetoresistive response is very small and characteristic for spin disorder
scattering, suggesting that overall the resistivity is controlled mostly by
nonmagnetic scattering processes. We discuss possible sources for the
temperature and field dependence of the transport properties, in particular
with respect to quantum criticality and electronic localization effects.Comment: 11 pages, 9 figures, submitted PR
Heavy-Fermions in LiV2O4: Kondo-Compensation vs. Spin-Liquid Behavior?
7Li NMR measurements were performed in the metallic spinel LiV2O4. The
temperature dependencies of the line width, the Knight shift and the
spin-lattice relaxation rate were investigated in the temperature range 30 mK <
T < 280 K. For temperatures T < 1 K we observe a spin-lattice relaxation rate
which slows down exponentially. The NMR results can be explained by a
spin-liquid behavior and the opening of a spin gap of the order 0.6 K
- …
