286 research outputs found

    Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors

    Full text link
    Penalized regression is an attractive framework for variable selection problems. Often, variables possess a grouping structure, and the relevant selection problem is that of selecting groups, not individual variables. The group lasso has been proposed as a way of extending the ideas of the lasso to the problem of group selection. Nonconvex penalties such as SCAD and MCP have been proposed and shown to have several advantages over the lasso; these penalties may also be extended to the group selection problem, giving rise to group SCAD and group MCP methods. Here, we describe algorithms for fitting these models stably and efficiently. In addition, we present simulation results and real data examples comparing and contrasting the statistical properties of these methods

    Nuclear Stopping in Au+Au Collisions at sqrt(sNN) = 200 GeV

    Full text link
    Transverse momentum spectra and rapidity densities, dN/dy, of protons, anti-protons, and net--protons (p-pbar) from central (0-5%) Au+Au collisions at sqrt(sNN) = 200 GeV were measured with the BRAHMS experiment within the rapidity range 0 < y < 3. The proton and anti-proton dN/dy decrease from mid-rapidity to y=3. The net-proton yield is roughly constant for y<1 at dN/dy~7, and increases to dN/dy~12 at y~3. The data show that collisions at this energy exhibit a high degree of transparency and that the linear scaling of rapidity loss with rapidity observed at lower energies is broken. The energy loss per participant nucleon is estimated to be 73 +- 6 GeV.Comment: 5 pages, 4 figure

    Evolution of the nuclear modification factors with rapidity and centrality in d+Au collisions at $\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We report on a study of the transverse momentum dependence of nuclear modification factors RdAuR_{dAu} for charged hadrons produced in deuteron + gold collisions at sNN=200\sqrt{s_{NN}}= 200GeV, as a function of collision centrality and of the pseudorapidity (η=0,1,2.2,3.2\eta = 0,1,2.2,3.2) of the produced hadrons. We find significant and systematic decrease of RdAuR_{dAu} with increasing rapidity. The midrapidity enhancement and the forward rapidity suppression are more pronounced in central collisions relative to peripheral collisions. These results are relevant to the study of the possible onset of gluon saturation at RHIC energies.Comment: Four pages, four figures. Published in PRL. Figures 1 and 2 have been updated, and several changes made to the tex

    Quark Gluon Plasma an Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment

    Full text link
    We review the main results obtained by the BRAHMS collaboration on the properties of hot and dense hadronic and partonic matter produced in ultrarelativistic heavy ion collisions at RHIC. A particular focus of this paper is to discuss to what extent the results collected so far by BRAHMS, and by the other three experiments at RHIC, can be taken as evidence for the formation of a state of deconfined partonic matter, the so called quark-gluon-plasma (QGP). We also discuss evidence for a possible precursor state to the QGP, i.e. the proposed Color Glass Condensate.Comment: 32 pages, 18 figure

    Centrality dependence of charged-particle pseudorapidity distributions from d+Au collisions at sqrt(s_{NN})=200 GeV

    Full text link
    Charged-particle pseudorapidity densities are presented for the d+Au reaction at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and 60-80% centrality classes. Models incorporating both soft physics and hard, perturbative QCD-based scattering physics agree well with the experimental results. The data do not support predictions based on strong-coupling, semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4 GeV.Comment: 4 pages, 3figures; expanded discussion of uncertainties; added 60-80% centrality range; added additional discussion on centrality selection bia

    Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    Full text link
    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multidisciplinary experiments in a laboratory whose projected life span is at least 30 years. From these experiments, a critical suite of experiments is outlined, whose construction will be funded along with the facility. The Facility design permits expansion and evolution, as may be driven by future science requirements, and enables participation by other agencies. The design leverages South Dakota's substantial investment in facility infrastructure, risk retirement, and operation of its Sanford Laboratory at Homestake. The Project is planning education and outreach programs, and has initiated efforts to establish regional partnerships with underserved populations - regional American Indian and rural populations

    Assessing the Effect of Piperacillin/Tazobactam on Hematological Parameters in Patients Admitted with Moderate or Severe Foot Infections

    Get PDF
    Introduction: Piperacillin/tazobactam is a commonly used antibiotic for the empirical treatment of severe diabetic foot infections. One of the most feared complications of this drug is the development of pancytopenia. The aim of this study was to determine whether the use of piperacillin/tazobactam caused any hematological changes in patients admitted with severe diabetes-related foot infections from a specialist multidisciplinary foot clinic. Specifically, looking at whether it caused anemia, leukopenia, neutropenia, or thrombocytopenia. Methods: A 1-year retrospective analysis of patients admitted to a tertiary care center for treatment of diabetes-related foot infection using piperacillin/tazobactam. Hematological indices, urea and electrolytes, and C-reactive protein (CRP) were recorded pretreatment, during treatment, and posttreatment. HbA1c, vitamin B12, folate, thyroid-stimulating hormone, and free thyroxin were also analyzed to exclude any potential confounders as a cause of pancytopenia. Results: A total of 154 patients were admitted between 1 January 2016 and 31 December 2016 who received piperacillin/tazobactam for severe diabetes-related foot infection. On admission, white cell count and CRP were raised and fell significantly within the first 48 h. Other hematological factors did not change. Five patients developed a mild pancytopenia, of which three were unexplained. Conclusion: In this relatively small cohort, pancytopenia did not occur. As such, piperacillin/tazobactam appeared to have a low risk of adverse hematological outcomes and remains the treatment of choice for severe diabetes-related foot infections

    Scanning the phases of QCD with BRAHMS

    Full text link
    BRAHMS has the ability to study relativistic heavy ion collisions from the final freeze-out of hadrons all the way back to the initial wave-function of the gold nuclei. This is accomplished by studying hadrons with a very wide range of momenta and angles. In doing so we can scan various phases of QCD, from a hadron gas, to a quark gluon plasma and perhaps to a color glass condensate.Comment: 8 pages, 6 figures, proceedings of plenary talk at Quark Matter 2004 conferenc

    High Pt Hadron Spectra at High Rapidity

    Full text link
    We report the measurement of charged hadron production at different pseudo-rapidity values in deuteron+gold as well as proton+proton collisions at sqrtsNNsqrt{s_{NN}} = 200GeV at RHIC. The nuclear modification factors RdAuR_{dAu} and RcpR_{cp} are used to investigate new behaviors in the deuteron+gold system as function of rapidity and the centrality of the collisions respectively.Comment: Nine pages 4 figures to be published in the QM2004 Proceedings, typos corrected and one reference adde

    The New Physics at RHIC. From Transparency to High pt_t Suppression

    Full text link
    Heavy ion collisions at RHIC energies (Au+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV) exhibit significant new features as compared to earlier experiments at lower energies. The reaction is characterized by a high degree of transparency of the collisions partners leading to the formation of a baryon-poor central region. In this zone, particle production occurs mainly from the stretching of the color field. The initial energy density is well above the one considered necessary for the formation of the Quark Gluon Plasma, QGP. The production of charged particles of various masses is consistent with chemical and thermal equilibrium. Recently, a suppression of the high transverse momentum component of hadron spectra has been observed in central Au+Au collisions. This can be explained by the energy loss experienced by leading partons in a medium with a high density of unscreened color charges. In contrast, such high ptp_t jets are not suppressed in d+Au collisions suggesting that the high ptp_t suppression is not due to initial state effects in the ultrarelativistic colliding nuclei.Comment: 15 pages, 11 figures. to appear in Nucl. Physics A. Invited talk at 'Nucleus-Nucleus Collisions 2003' conference, Mosco
    corecore