793 research outputs found

    A pathway for mitotic chromosome formation

    Get PDF
    Mitotic chromosomes fold as compact arrays of chromatin loops. To identify the pathway of mitotic chromosome formation, we combined imaging and Hi-C analysis of synchronous DT40 cell cultures with polymer simulations. Here we show that in prophase, the interphase organization is rapidly lost in a condensin-dependent manner, and arrays of consecutive 60-kilobase (kb) loops are formed. During prometaphase, ~80-kb inner loops are nested within ~400-kb outer loops. The loop array acquires a helical arrangement with consecutive loops emanating from a central spiral staircase condensin scaffold. The size of helical turns progressively increases to ~12 megabases during prometaphase. Acute depletion of condensin I or II shows that nested loops form by differential action of the two condensins, whereas condensin II is required for helical winding

    Fission yeast 26S proteasome mutants are multi-drug resistant due to stabilization of the pap1 transcription factor

    Get PDF
    Here we report the result of a genetic screen for mutants resistant to the microtubule poison methyl benzimidazol-2-yl carbamate (MBC) that were also temperature sensitive for growth. In total the isolated mutants were distributed in ten complementation groups. Cloning experiments revealed that most of the mutants were in essential genes encoding various 26S proteasome subunits. We found that the proteasome mutants are multi-drug resistant due to stabilization of the stress-activated transcription factor Pap1. We show that the ubiquitylation and ultimately the degradation of Pap1 depend on the Rhp6/Ubc2 E2 ubiquitin conjugating enzyme and the Ubr1 E3 ubiquitin-protein ligase. Accordingly, mutants lacking Rhp6 or Ubr1 display drug-resistant phenotypes

    Ergogenic effects of spinal cord stimulation on exercise performance following spinal cord injury

    Get PDF
    Cervical or upper-thoracic spinal cord injury (SCI, ≥T6) often leads to low resting blood pressure (BP) and impaired cardiovascular responses to acute exercise due to disrupted supraspinal sympathetic drive. Epidural spinal cord stimulation (invasive, ESCS) and transcutaneous spinal cord stimulation (non-invasive, TSCS) have previously been used to target dormant sympathetic circuits and modulate cardiovascular responses. This case series compared the effects of cardiovascular-optimised ESCS and TSCS versus sham ESCS and TSCS on modulating cardiovascular responses and improving submaximal upper-body exercise performance in individuals with SCI. Seven males with a chronic, motor-complete SCI between C6 and T4 underwent a mapping session to identify cardiovascular responses to spinal cord stimulation. Subsequently, four participants (two ESCS and two TSCS) completed submaximal exercise testing. Stimulation parameters (waveform, frequency, intensity, epidural electrode array configuration, and transcutaneous electrode locations in the lumbosacral region) were optimised to elevate cardiovascular responses (CV-SCS). A sham condition (SHAM-SCS) served as a comparison. Participants performed arm-crank exercise to exhaustion at a fixed workload corresponding to above ventilatory threshold, on separate days, with CV-SCS or SHAM-SCS. At rest, CV-SCS increased BP and predicted left ventricular cardiac contractility and total peripheral resistance. During exercise, CV-SCS increased time to exhaustion and peak oxygen pulse (a surrogate for stroke volume), relative to SHAM-SCS. Ratings of perceived exertion also tended to be lower with CV-SCS than SHAM-SCS. Comparable improvements in time to exhaustion with ESCS and TSCS suggest that both approaches could be promising ergogenic aids to support exercise performance or rehabilitation, along with reducing fatigue during activities of daily living in individuals with SCI

    Multi-layer scintillation detector for the MOON double beta decay experiment: Scintillation photon responses studied by a prototype detector MOON-1

    Get PDF
    An ensemble of multi-layer scintillators is discussed as an option of the high-sensitivity detector Mo Observatory Of Neutrinos (MOON) for spectroscopic measurements of neutrino-less double beta decays. A prototype detector MOON-1, which consists of 6 layer plastic-scintillator plates, was built to study the sensitivity of the MOON-type detector. The scintillation photon collection and the energy resolution, which are key elements for the high-sensitivity experiments, are found to be 1835+/-30 photo-electrons for 976 keV electrons and sigma = 2.9+/-0.1% (dE/E = 6.8+/-0.3 % in FWHM) at the Qbb ~ 3 MeV region, respectively. The multi-layer plastic-scintillator structure with good energy resolution as well as good background suppression of beta-gamma rays is crucial for the MOON-type detector to achieve the inverted hierarchy neutrino mass sensitivity.Comment: 8 pages, 16 figures, submitted to Nucl.Instrum.Met

    Supervised machine learning algorithms can classify open-text feedback of doctor performance with human-level accuracy

    Get PDF
    Background: Machine learning techniques may be an effective and efficient way to classify open-text reports on doctor’s activity for the purposes of quality assurance, safety, and continuing professional development. Objective: The objective of the study was to evaluate the accuracy of machine learning algorithms trained to classify open-text reports of doctor performance and to assess the potential for classifications to identify significant differences in doctors’ professional performance in the United Kingdom. Methods: We used 1636 open-text comments (34,283 words) relating to the performance of 548 doctors collected from a survey of clinicians’ colleagues using the General Medical Council Colleague Questionnaire (GMC-CQ). We coded 77.75% (1272/1636) of the comments into 5 global themes (innovation, interpersonal skills, popularity, professionalism, and respect) using a qualitative framework. We trained 8 machine learning algorithms to classify comments and assessed their performance using several training samples. We evaluated doctor performance using the GMC-CQ and compared scores between doctors with different classifications using t tests. Results: Individual algorithm performance was high (range F score=.68 to .83). Interrater agreement between the algorithms and the human coder was highest for codes relating to “popular” (recall=.97), “innovator” (recall=.98), and “respected” (recall=.87) codes and was lower for the “interpersonal” (recall=.80) and “professional” (recall=.82) codes. A 10-fold cross-validation demonstrated similar performance in each analysis. When combined together into an ensemble of multiple algorithms, mean human-computer interrater agreement was .88. Comments that were classified as “respected,” “professional,” and “interpersonal” related to higher doctor scores on the GMC-CQ compared with comments that were not classified (P.05). Conclusions: Machine learning algorithms can classify open-text feedback of doctor performance into multiple themes derived by human raters with high performance. Colleague open-text comments that signal respect, professionalism, and being interpersonal may be key indicators of doctor’s performance
    corecore