19 research outputs found

    A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori

    Get PDF
    In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence

    Precocious Metamorphosis in the Juvenile Hormone–Deficient Mutant of the Silkworm, Bombyx mori

    Get PDF
    Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several “moltinism” mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval–larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval–pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH–deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis

    Carotenoid silk coloration is controlled by a carotenoid-binding protein, a product of the Yellow blood gene

    No full text
    Mechanisms for the uptake and transport of carotenoids, essential nutrients for humans, are not well understood in any animal system. The Y (Yellow blood) gene, a critical cocoon color determinant in the silkworm Bombyx mori, controls the uptake of carotenoids into the intestinal mucosa and the silk gland. Here we provide evidence that the Y gene corresponds to the intracellular carotenoid-binding protein (CBP) gene. In the Y recessive strain, the absence of an exon, likely due to an incorrect mRNA splicing caused by a transposon-associated genomic deletion, generates a nonfunctional CBP mRNA, resulting in colorless hemolymph and white cocoons. Enhancement of carotenoid uptake and coloration of the white cocoon was achieved by germ-line transformation with the CBP gene. This study demonstrates the existence of a genetically facilitated intracellular process beyond passive diffusion for carotenoid uptake in the animal phyla, and paves the way for modulating silk color and lipid content through genetic engineering

    STARD3: A Lipid Transfer Protein in Breast Cancer and Cholesterol Trafficking

    No full text
    International audienceSTARD3 was isolated in the early 1990s in a study aimed at finding new genes implicated in breast cancer. The function of the STARD3 gene, referred to at that time as Metastatic Lymph Node clone number 64 (MLN64), remained a mystery until the discovery of the steroidogenic acute regulatory protein (StAR/STARD1). Indeed, homology searches showed a region of significant similarity between StAR and the carboxy-terminal half of STARD3. This homology proved to be functionally relevant with both proteins being cholesterol carriers; however, quite early it appeared that they were very distinct in terms of expression, subcellular localization, and function. It was then reported that STARD3 was part of a family of 15 human proteins that shared a conserved StAR-related lipid transfer (START) domain. Structurally, the STARD3 protein distinguishes itself by the presence of an additional conserved domain spanning the amino-terminal half of the protein that we named the MLN64-N-terminal (MENTAL) domain. This domain contains most of the functional properties that have been attributed to STARD3. This chapter will present our current understanding of STARD3 function in cancer, cell biology, and cholesterol trafficking
    corecore