1,462 research outputs found

    Adjuvant Migraine Medications in the Treatment of Sudden Sensorineural Hearing Loss.

    Get PDF
    Objectives/hypothesisTo examine the hearing outcomes of patients with sudden sensorineural hearing loss (SSNHL) treated with oral and intratympanic (IT) steroid only or a combination of steroid and migraine treatment. Our hypothesis was that adjuvant migraine medications may improve outcomes in SSNHL.MethodsA retrospective chart review at a tertiary otology center was conducted to identify patients with SSNHL who received oral steroid and IT dexamethasone injection(s) with or without migraine medications (a combination of nortriptyline and topiramate).ResultsA total of 47 patients received oral steroid and IT dexamethasone injection(s) only, and 46 patients received oral steroid and IT dexamethasone injection(s) as well as migraine lifestyle changes plus a combination of nortriptyline and topiramate. There were no significant differences in demographics and baseline audiometric data between the two groups. Both groups demonstrated improvements in pure tone average (PTA) and hearing thresholds at 250 Hz and 8000 Hz posttreatment. However, compared to steroid-only group, the adjuvant migraine medications group had significantly greater improvements in hearing thresholds at the lower frequencies (250 Hz, 500 Hz, 1000 Hz). Patients in the latter cohort also had greater improvement in PTA (P = .01) and received fewer IT injections (P = .04) PTA improvement of ≥ 10 dB was observed in 36 patients (78%) in the adjuvant migraine medications group and 22 patients (46%) in the control group (P < .001).ConclusionIn multimodal treatment of SSNHL, supplementing oral and IT steroid with migraine medications may result in greater improvements in lower frequency hearing thresholds and PTA. Furthermore, adjuvant migraine treatment can lead to decrease in number of IT injections, thus reducing procedure-related risks and complications.Level of evidence3 Laryngoscope, 131:E283-E288, 2021

    Transfer Learning for High Resolution Aerial Image Classification

    Get PDF
    With rapid developments in satellite and sensor technologies, increasing amount of high spatial resolution aerial images have become available. Classification of these images are important for many remote sensing image understanding tasks, such as image retrieval and object detection. Meanwhile, image classification in the computer vision field is revolutionized with recent popularity of the convolutional neural networks (CNN), based on which the state-of-the-art classification results are achieved. Therefore, the idea of applying the CNN for high resolution aerial image classification is straightforward. However, it is not trivial mainly because the amount of labeled images in remote sensing for training a deep neural network is limited. As a result, transfer learning techniques were adopted for this problem, where the CNN used for the classification problem is pre-trained on a larger dataset beforehand. In this paper, we propose a specific fine-tuning strategy that results in better CNN models for aerial image classification. Extensive experiments were carried out using the proposed approach with different CNN architectures. Our proposed method shows competitive results compared to the existing approaches, indicating the superiority of the proposed fine-tuning algorith

    First principles-based multiparadigm, multiscale strategy for simulating complex materials processes with applications to amorphous SiC films

    Get PDF
    Progress has recently been made in developing reactive force fields to describe chemical reactions in systems too large for quantum mechanical (QM) methods. In particular, ReaxFF, a force field with parameters that are obtained solely from fitting QM reaction data, has been used to predict structures and properties of many materials. Important applications require, however, determination of the final structures produced by such complex processes as chemical vapor deposition, atomic layer deposition, and formation of ceramic films by pyrolysis of polymers. This requires the force field to properly describe the formation of other products of the process, in addition to yielding the final structure of the material. We describe a strategy for accomplishing this and present an example of its use for forming amorphous SiC films that have a wide variety of applications. Extensive reactive molecular dynamics (MD) simulations have been carried out to simulate the pyrolysis of hydridopolycarbosilane. The reaction products all agree with the experimental data. After removing the reaction products, the system is cooled down to room temperature at which it produces amorphous SiC film, for which the computed radial distribution function, x-ray diffraction pattern, and the equation of state describing the three main SiC polytypes agree with the data and with the QM calculations. Extensive MD simulations have also been carried out to compute other structural properties, as well the effective diffusivities of light gases in the amorphous SiC film

    Cellular players that shape evolving pathology and neurodegeneration following traumatic brain injury

    Get PDF
    Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide, and has emerged as a critical risk factor for multiple neurodegenerative diseases, particularly Alzheimer’s disease (AD). How the inflammatory cascade resulting from mechanical stress, axonal shearing and the loss of neurons and glia following initial impact in TBI, contributes to the development of AD-like disease is unclear. Neuroinflammation, characterized by blood-brain barrier (BBB) dysfunction and activation of brain-resident microglia and astrocytes, resulting in secretion of inflammatory mediators and subsequent recruitment of peripheral immune cells has been the focus of extensive research in attempts to identify drug-targets towards improving functional outcomes post TBI. While knowledge of intricate cellular interactions that shape lesion pathophysiology is incomplete, a major limitation in the field is the lack of understanding of how distinct cell types differentially alter TBI pathology. The aim of this review is to highlight functional differences between populations of bone marrow derived, infiltrating monocytes/macrophages and brain-resident microglia based on differential expression of the chemokine receptors CCR2 and CX3CR1. This review will focus on how unique subsets of mononuclear phagocytes shape TBI pathophysiology, neurotoxicity and BBB function, in a disease-stage dependent manner. Additionally, this review summarizes the role of multiple microglia and macrophage receptors, namely CCR2, CX3CR1 and Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) in pathological neuroinflammation and neurodegeneration vs. recovery following TBI. TREM2 has been implicated in mediating AD-related pathology, and variants in TREM2 are particularly important due to their correlation with exacerbated neurodegeneration. Finally, this review highlights behavioral outcomes associated with microglial vs. macrophage variances, the need for novel treatment strategies that target unique subpopulations of peripheral macrophages, and the importance of development of therapeutics to modulate inflammatory functions of brain-resident microglia at specific stages of TBI

    Application of semidefinite programming to maximize the spectral gap produced by node removal

    Full text link
    The smallest positive eigenvalue of the Laplacian of a network is called the spectral gap and characterizes various dynamics on networks. We propose mathematical programming methods to maximize the spectral gap of a given network by removing a fixed number of nodes. We formulate relaxed versions of the original problem using semidefinite programming and apply them to example networks.Comment: 1 figure. Short paper presented in CompleNet, Berlin, March 13-15 (2013

    Pre-emptive nebulization of lidocaine epinephrine before anesthesia for rigid bronchoscopy in pediatric: a randomized controlled study

    Get PDF
    Background: Foreign body aspiration in pediatrics is usually managed by rigid bronchoscopy, which is associated with plenty of adverse events. Objective: We tried to compare the effect of nebulized saline, lidocaine or combined lidocaine with epinephrine on postoperative respiratory complications.Patients and methods: This prospective study included 90 children, who were divided into three groups according to the nebulized solution; NS group (normal saline 0.9%), L group (lidocaine 1% 4 mg.kg- 1) and LA group [4 mg.kg- 1 lidocaine 1% and adrenaline (1:1000) 3 mg). Our primary outcome was the incidence of post-operative respiratory complications, while the secondary ones included hemodynamic changes and the incidence of intraoperative cough or desaturation. Results: All pre-procedural data were insignificant among the three groups. The LA group expressed higher heart rates, while the L group showed a significant reduction when compared to NS group. Propofol consumption showed a significant decline in two studied groups compared to the NS group. Intraoperative cough was higher in NS group in comparison to L and LA groups. Although, intraoperative desaturation per case along with post-operative sedation showed no significant difference among the three groups, post-operative cough frequency attacks and severity were higher in NS group when compared to L and LA group and when L group were compared to LA group. Post-operative stridor was insignificant among the three groups.Conclusion: Nebulized lidocaine/adrenaline combination is appropriate option to achieve proper intraoperative sedation and upper airway conditions with reduction of post-operative negative respiratory outcomes together with minor hemodynamic changes
    • …
    corecore