10 research outputs found

    Self-force: Computational Strategies

    Full text link
    Building on substantial foundational progress in understanding the effect of a small body's self-field on its own motion, the past 15 years has seen the emergence of several strategies for explicitly computing self-field corrections to the equations of motion of a small, point-like charge. These approaches broadly fall into three categories: (i) mode-sum regularization, (ii) effective source approaches and (iii) worldline convolution methods. This paper reviews the various approaches and gives details of how each one is implemented in practice, highlighting some of the key features in each case.Comment: Synchronized with final published version. Review to appear in "Equations of Motion in Relativistic Gravity", published as part of the Springer "Fundamental Theories of Physics" series. D. Puetzfeld et al. (eds.), Equations of Motion in Relativistic Gravity, Fundamental Theories of Physics 179, Springer, 201

    Summary of Session B3Analytic Approximations, Perturbation Methods and Their Applications

    No full text
    The paper summarizes the parallel session B3 analytic approximations, perturbation methods and their applications of the GR18 conference. The talks in the session reported notably recent advances in black hole perturbations and post-Newtonian approximations as applied to sources of gravitational waves

    Analytic approximations and perturbation methodsand their applications

    No full text
    The paper summarizes the parallel session B3 analytic approximations, perturbation methods and their applications of the GR18 conference. The talks in the session reported notably recent advances in black hole perturbations and post-Newtonian approximations as applied to sources of gravitational waves

    The Motion of Point Particles in Curved Spacetime

    No full text
    corecore