1,336 research outputs found

    Thermopower of gapped bilayer graphene

    Full text link
    We calculate thermopower of clean and impure bilayer graphene systems. Opening a band gap through the application of an external electric field is shown to greatly enhance the thermopower of bilayer graphene, which is more than four times that of the monolayer graphene and gapless bilayer graphene at room temperature. The effect of scattering by dilute charged impurities is discussed in terms of the self-consistent Born approximation. Temperature dependence of the thermopower is also analyzed.Comment: 8 pages, 5 figures; An inconsistency in the definitions of Eq.(17) and (18) in version 1 is found and correcte

    Two hard spheres in a pore: Exact Statistical Mechanics for different shaped cavities

    Get PDF
    The Partition function of two Hard Spheres in a Hard Wall Pore is studied appealing to a graph representation. The exact evaluation of the canonical partition function, and the one-body distribution function, in three different shaped pores are achieved. The analyzed simple geometries are the cuboidal, cylindrical and ellipsoidal cavities. Results have been compared with two previously studied geometries, the spherical pore and the spherical pore with a hard core. The search of common features in the analytic structure of the partition functions in terms of their length parameters and their volumes, surface area, edges length and curvatures is addressed too. A general framework for the exact thermodynamic analysis of systems with few and many particles in terms of a set of thermodynamic measures is discussed. We found that an exact thermodynamic description is feasible based in the adoption of an adequate set of measures and the search of the free energy dependence on the adopted measure set. A relation similar to the Laplace equation for the fluid-vapor interface is obtained which express the equilibrium between magnitudes that in extended systems are intensive variables. This exact description is applied to study the thermodynamic behavior of the two Hard Spheres in a Hard Wall Pore for the analyzed different geometries. We obtain analytically the external work, the pressure on the wall, the pressure in the homogeneous zone, the wall-fluid surface tension, the line tension and other similar properties

    Mean-field calculation of critical parameters and log-periodic characterization of an aperiodic-modulated model

    Full text link
    We employ a mean-field approximation to study the Ising model with aperiodic modulation of its interactions in one spatial direction. Two different values for the exchange constant, JAJ_A and JBJ_B, are present, according to the Fibonacci sequence. We calculated the pseudo-critical temperatures for finite systems and extrapolate them to the thermodynamic limit. We explicitly obtain the exponents β\beta, δ\delta, and γ\gamma and, from the usual scaling relations for anisotropic models at the upper critical dimension (assumed to be 4 for the model we treat), we calculate α\alpha, ν\nu, ν//\nu_{//}, η\eta, and η//\eta_{//}. Within the framework of a renormalization-group approach, the Fibonacci sequence is a marginal one and we obtain exponents which depend on the ratio rJB/JAr \equiv J_B/J_A, as expected. But the scaling relation γ=β(δ1)\gamma = \beta (\delta -1) is obeyed for all values of rr we studied. We characterize some thermodynamic functions as log-periodic functions of their arguments, as expected for aperiodic-modulated models, and obtain precise values for the exponents from this characterization.Comment: 17 pages, including 9 figures, to appear in Phys. Rev.

    Effective Free Energy for Individual Dynamics

    Full text link
    Physics and economics are two disciplines that share the common challenge of linking microscopic and macroscopic behaviors. However, while physics is based on collective dynamics, economics is based on individual choices. This conceptual difference is one of the main obstacles one has to overcome in order to characterize analytically economic models. In this paper, we build both on statistical mechanics and the game theory notion of Potential Function to introduce a rigorous generalization of the physicist's free energy, which includes individual dynamics. Our approach paves the way to analytical treatments of a wide range of socio-economic models and might bring new insights into them. As first examples, we derive solutions for a congestion model and a residential segregation model.Comment: 8 pages, 2 figures, presented at the ECCS'10 conferenc

    Mesoscopic model for the fluctuating hydrodynamics of binary and ternary mixtures

    Full text link
    A recently introduced particle-based model for fluid dynamics with continuous velocities is generalized to model immiscible binary mixtures. Excluded volume interactions between the two components are modeled by stochastic multiparticle collisions which depend on the local velocities and densities. Momentum and energy are conserved locally, and entropically driven phase separation occurs for high collision rates. An explicit expression for the equation of state is derived, and the concentration dependence of the bulk free energy is shown to be the same as that of the Widom-Rowlinson model. Analytic results for the phase diagram are in excellent agreement with simulation data. Results for the line tension obtained from the analysis of the capillary wave spectrum of a droplet agree with measurements based on the Laplace's equation. The introduction of "amphiphilic" dimers makes it possible to model the phase behavior and dynamics of ternary surfactant mixtures.Comment: 7 pages including 6 figure

    Chemical Potential and the Nature of the Dark Energy: The case of phantom

    Full text link
    The influence of a possible non zero chemical potential μ\mu on the nature of dark energy is investigated by assuming that the dark energy is a relativistic perfect simple fluid obeying the equation of state (EoS), p=ωρp=\omega \rho (ω<0,constant\omega <0, constant). The entropy condition, S0S \geq 0, implies that the possible values of ω\omega are heavily dependent on the magnitude, as well as on the sign of the chemical potential. For μ>0\mu >0, the ω\omega-parameter must be greater than -1 (vacuum is forbidden) while for μ<0\mu < 0 not only the vacuum but even a phantomlike behavior (ω<1\omega <-1) is allowed. In any case, the ratio between the chemical potential and temperature remains constant, that is, μ/T=μ0/T0\mu/T=\mu_0/T_0. Assuming that the dark energy constituents have either a bosonic or fermionic nature, the general form of the spectrum is also proposed. For bosons μ\mu is always negative and the extended Wien's law allows only a dark component with ω<1/2\omega < -1/2 which includes vacuum and the phantomlike cases. The same happens in the fermionic branch for μ0\mu 0 are permmited only if 1<ω<1/2-1 < \omega < -1/2. The thermodynamics and statistical arguments constrain the EoS parameter to be ω<1/2\omega < -1/2, a result surprisingly close to the maximal value required to accelerate a FRW type universe dominated by matter and dark energy (ω10/21\omega \lesssim -10/21).Comment: 7 pages, 5 figure

    Thermodynamic equilibrium and its stability for Microcanonical systems described by the Sharma-Taneja-Mittal entropy

    Full text link
    It is generally assumed that the thermodynamic stability of equilibrium state is reflected by the concavity of entropy. We inquire, in the microcanonical picture, on the validity of this statement for systems described by the bi-parametric entropy Sκ,rS_{_{\kappa, r}} of Sharma-Taneja-Mittal. We analyze the ``composability'' rule for two statistically independent systems, A and B, described by the entropy Sκ,rS_{_{\kappa, r}} with the same set of the deformed parameters. It is shown that, in spite of the concavity of the entropy, the ``composability'' rule modifies the thermodynamic stability conditions of the equilibrium state. Depending on the values assumed by the deformed parameters, when the relation Sκ,r(AB)>Sκ,r(A)+Sκ,r(B)S_{_{\kappa, r}}({\rm A}\cup{\rm B})> S_{_{\kappa, r}}({\rm A})+S_{_{\kappa, r}}({\rm B}) holds (super-additive systems), the concavity conditions does imply the thermodynamics stability. Otherwise, when the relation Sκ,r(AB)<Sκ,r(A)+Sκ,r(B)S_{_{\kappa, r}}({\rm A}\cup{\rm B})<S_{_{\kappa, r}}({\rm A})+S_{_{\kappa, r}}({\rm B}) holds (sub-additive systems), the concavity conditions does not imply the thermodynamical stability of the equilibrium state.Comment: 13 pages, two columns, 1 figure, RevTex4, version accepted on PR

    Thermodynamic phase transitions and shock singularities

    Full text link
    We show that under rather general assumptions on the form of the entropy function, the energy balance equation for a system in thermodynamic equilibrium is equivalent to a set of nonlinear equations of hydrodynamic type. This set of equations is integrable via the method of the characteristics and it provides the equation of state for the gas. The shock wave catastrophe set identifies the phase transition. A family of explicitly solvable models of non-hydrodynamic type such as the classical plasma and the ideal Bose gas are also discussed.Comment: revised version, 18 pages, 6 figure

    General pseudoadditivity of composable entropy prescribed by existence of equilibrium

    Full text link
    The concept of composability states that entropy of the total system composed of independent subsystems is a function of entropies of the subsystems. Here, the most general pseudoadditivity rule for composable entropy is derived based only on existence of equilibrium.Comment: 12 page

    A Study of Heavy-Light Mesons on the Transverse Lattice

    Get PDF
    We present results from a study of meson spectra and structure in the limit where one quark is infinitely heavy. The calculations, based on the framework of light-front QCD formulated on a transverse lattice, are the first non-perturbative studies of B-mesons in light-front QCD. We calculate the Isgur-Wise form factor, light-cone distribution amplitude, the heavy-quark parton distribution function and the leptonic decay constant of B-mesons.Comment: 5 pages, 3 figures, Revtex, corrected typos, added references, included moment
    corecore