34,320 research outputs found
Thermal environment
Human tolerance in thermal environment, thermal physiology of space clothing, and biothermal considerations in space cabin desig
Spinorial Characterizations of Surfaces into 3-dimensional pseudo-Riemannian Space Forms
We give a spinorial characterization of isometrically immersed surfaces of
arbitrary signature into 3-dimensional pseudo-Riemannian space forms. For
Lorentzian surfaces, this generalizes a recent work of the first author in
to other Lorentzian space forms. We also characterize
immersions of Riemannian surfaces in these spaces. From this we can deduce
analogous results for timelike immersions of Lorentzian surfaces in space forms
of corresponding signature, as well as for spacelike and timelike immersions of
surfaces of signature (0,2), hence achieving a complete spinorial description
for this class of pseudo-Riemannian immersions.Comment: 9 page
A simulation study of scene confusion factors in sensing soil moisture from orbital radar
Simulated C-band radar imagery for a 124-km by 108-km test site in eastern Kansas is used to classify soil moisture. Simulated radar resolutions are 100 m by 100 m, 1 km by 1km, and 3 km by 3 km. Distributions of actual near-surface soil moisture are established daily for a 23-day accounting period using a water budget model. Within the 23-day period, three orbital radar overpasses are simulated roughly corresponding to generally moist, wet, and dry soil moisture conditions. The radar simulations are performed by a target/sensor interaction model dependent upon a terrain model, land-use classification, and near-surface soil moisture distribution. The accuracy of soil-moisture classification is evaluated for each single-date radar observation and also for multi-date detection of relative soil moisture change. In general, the results for single-date moisture detection show that 70% to 90% of cropland can be correctly classified to within +/- 20% of the true percent of field capacity. For a given radar resolution, the expected classification accuracy is shown to be dependent upon both the general soil moisture condition and also the geographical distribution of land-use and topographic relief. An analysis of cropland, urban, pasture/rangeland, and woodland subregions within the test site indicates that multi-temporal detection of relative soil moisture change is least sensitive to classification error resulting from scene complexity and topographic effects
Depletion potentials near geometrically structured substrates
Using the recently developed so-called White Bear version of Rosenfeld's
Fundamental Measure Theory we calculate the depletion potentials between a
hard-sphere colloidal particle in a solvent of small hard spheres and simple
models of geometrically structured substrates: a right-angled wedge or edge. In
the wedge geometry, there is a strong attraction beyond the corresponding one
near a planar wall that significantly influences the structure of colloidal
suspensions in wedges. In accordance with an experimental study, for the edge
geometry we find a free energy barrier of the order of several which
repels a big colloidal particle from the edge.Comment: 7 pages, 7 figure
Pairing in the Framework of the Unitary Correlation Operator Method (UCOM): Hartree-Fock-Bogoliubov Calculations
In this first in a series of articles, we apply effective interactions
derived by the Unitary Correlation Operator Method (UCOM) to the description of
open-shell nuclei, using a self-consistent Hartree-Fock-Bogoliubov framework to
account for pairing correlations. To disentangle the particle-hole and
particle-particle channels and assess the pairing properties of \VUCOM, we
consider hybrid calculations using the phenomenological Gogny D1S interaction
to derive the particle-hole mean field. In the main part of this article, we
perform calculations of the tin isotopic chain using \VUCOM in both the
particle-hole and particle-particle channels. We study the interplay of both
channels, and discuss the impact of non-central and non-local terms in
realistic interactions as well as the frequently used restriction of pairing
interactions to the partial wave. The treatment of the center-of-mass
motion and its effect on theoretical pairing gaps is assessed independently of
the used interactions.Comment: 14 pages, 10 figures, to appear in Phys. Rev. C, title modified
accordingl
Mars: Seasonally variable radar reflectivity
Since reflectivity is a quantity characteristic of a given target at a particular geometry, the same (temporally unchanging) target examined by radar on different occasions should have the same reflectivity. Zisk and Mouginis-Mark noted that the average reflectivities in the Goldstone Mars data increased as the planet's S hemisphere passed from the late spring into early summer. The same data set was re-examined and the presence of the phenomenon of the apparent seasonal variability of radar reflectivity was confirmed. Two objections to these findings are addressed: (1) reflectivity variations may be present in the Goldstone Mars data as a result of an instrument/calibration error; and (2) the variations were introduced into the analysis through comparing reflectivities from two incompatible subsets of the data
Time Data Sequential Processor /TDSP/
Time Data Sequential Processor /TDSP/ computer program provides preflight predictions for lunar trajectories from injection to impact, and for planetary escape trajectories for up to 100 hours from launch. One of the major options TDSP performs is the determination of tracking station view periods
Mechanical Design of the MID Split-and-Delay Line at the European XFEL
A new split-and-delay line (SDL) is under development for the Materials Imaging and Dynamics (MID) end station at the European XFEL.* The device utilises Bragg reflection to provide pairs of X-ray pulses with an energy of (5 - 10) keV and a continuously tunable time delay of (-10 - 800) ps - thus allowing zero-crossing of the time delay. The mechanical concept features separate positioning stages for each optical element. Those are based on a serial combination of coarse motion axes and a fine alignment 6 DoF Cartesian parallel kinematics**. That allows to meet the contradictory demands of a fast long-range travel of up to 1000 mm and in the same time a precise alignment with a resolution in the nanometer range. Multiple laser interferometers monitor the position of the optical elements and allow an active control of their alignment. All optical elements and mechanics will be installed inside an UHV chamber, including the interferometer and about 100 stepper motors. With this paper we present the mechanical design for the SDL. It will additionally show the design of a prototype of a positioning stage which allows extensive testing of the implemented concepts and techniques
Integer programming methods for special college admissions problems
We develop Integer Programming (IP) solutions for some special college
admission problems arising from the Hungarian higher education admission
scheme. We focus on four special features, namely the solution concept of
stable score-limits, the presence of lower and common quotas, and paired
applications. We note that each of the latter three special feature makes the
college admissions problem NP-hard to solve. Currently, a heuristic based on
the Gale-Shapley algorithm is being used in the application. The IP methods
that we propose are not only interesting theoretically, but may also serve as
an alternative solution concept for this practical application, and also for
other ones
- …
