2,450 research outputs found

    Radioactive method enables determination of surface areas rapidly and accurately

    Get PDF
    Radioactive krypton adsorption technique is used to determine the surface area of more than one sample of material simultaneously

    VETA x ray data acquisition and control system

    Get PDF
    We describe the X-ray Data Acquisition and Control System (XDACS) used together with the X-ray Detection System (XDS) to characterize the X-ray image during testing of the AXAF P1/H1 mirror pair at the MSFC X-ray Calibration Facility. A variety of X-ray data were acquired, analyzed and archived during the testing including: mirror alignment, encircled energy, effective area, point spread function, system housekeeping and proportional counter window uniformity data. The system architecture is presented with emphasis placed on key features that include a layered UNIX tool approach, dedicated subsystem controllers, real-time X-window displays, flexibility in combining tools, network connectivity and system extensibility. The VETA test data archive is also described

    Temperature dependence of the energy dissipation in dynamic force microscopy

    Full text link
    The dissipation of energy in dynamic force microscopy is usually described in terms of an adhesion hysteresis mechanism. This mechanism should become less efficient with increasing temperature. To verify this prediction we have measured topography and dissipation data with dynamic force microscopy in the temperature range from 100 K up to 300 K. We used 3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) grown on KBr(001), both materials exhibiting a strong dissipation signal at large frequency shifts. At room temperature, the energy dissipated into the sample (or tip) is 1.9 eV/cycle for PTCDA and 2.7 eV/cycle for KBr, respectively, and is in good agreement with an adhesion hysteresis mechanism. The energy dissipation over the PTCDA surface decreases with increasing temperature yielding a negative temperature coefficient. For the KBr substrate, we find the opposite behaviour: an increase of dissipated energy with increasing temperature. While the negative temperature coefficient in case of PTCDA agrees rather well with the adhesion hysteresis model, the positive slope found for KBr points to a hitherto unknown dissipation mechanism

    Screening of COPD patients for abdominal aortic aneurysm

    Get PDF
    Purpose: Screening for abdominal aortic aneurysm (AAA) in “men aged over 65 years who have ever smoked” is a recommended policy. To reduce the number of screenings, it may be of value to define subgroups with a higher prevalence of AAA. Since chronic obstructive pulmonary disease (COPD) and AAA are associated with several common risk factors, this study investigates the prevalence of AAA in COPD patients. Patients and methods: Patients with COPD were identified via the hospital information system. Inclusion criteria were: COPD stage I–IV, ability to give full consent, and age >18 years; exclusion criteria were: patient too obese for an ultrasound check, previously diagnosed AAA, prior surgery for AAA, or ethical grounds such as concomitant advanced malignant or end-stage disease. The primary endpoint of the study was an aortic diameter measured by ultrasound of ≥30 mm. Defined secondary endpoints were evaluated on the basis of medical records and interviews. Results: Of the 1,180 identified COPD patients, 589 were included in this prospective study. In 22 patients (3.70%), the aortic diameter was ≥30 mm, representing an AAA prevalence of 6.72% among males aged >65 years. The risk of AAA increased with the following comorbidities/risk factors: male sex (odds ratio [OR] 2.98), coronary heart disease (OR 2.81), peripheral arterial occlusive disease (OR 2.47), hyperlipoproteinemia (OR 2.77), AAA in the family history (OR 3.95), and COPD stage I/II versus IV (OR 1.81). Conclusion: The overall AAA prevalence of 3.7% in our group of COPD patients is similar to that of the general population aged >65 years. However, the frequency of AAA in male COPD patients aged >65 years is considerably higher (6.72%) and increased further still in those individuals with additional comorbidities/risk factors. Defining subgroups with a higher risk of AAA may increase the efficiency of screening

    Surveying the Inner Halo of the Galaxy with 2MASS-Selected Horizontal Branch Candidates

    Full text link
    We use 2MASS photometry to select blue horizontal branch (BHB) candidates covering the sky |b|>15 deg. A 12.5<J<15.5 sample of BHB stars traces the thick disk and inner halo to d<9 kpc, with a density comparable to that of M giant stars. We base our sample selection strategy on the Century Survey Galactic Halo Project, a survey that provides a complete, spectroscopically-identified sample of blue stars to a similar depth as the 2MASS catalog. We show that a -0.20<(J-H)_0<0.10, -0.10<(H-K)_0<0.10 color-selected sample of stars is 65% complete for BHB stars, and is composed of 47% BHB stars. We apply this photometric selection to the full 2MASS catalog, and see no spatial overdensities of BHB candidates at high Galactic latitude |b|>50 deg. We insert simulated star streams into the data and conclude that the high Galactic latitude BHB candidates are consistent with having no ~5 deg wide star stream with density greater than 0.33 objects deg^-2 at the 95% confidence level. The absence of structure suggests there have been no major accretion events in the inner halo in the last few Gyr. However, at low Galactic latitudes a two-point angular correlation analysis reveals structure on angular scales <1 deg. This structure is apparently associated with stars in the thick disk, and has a physical scale of 10-100 pc. Interestingly, such structures are expected by cosmological simulations that predict the majority of the thick disk may arise from accretion and disruption of satellite mergers.Comment: 11 pages, including figures. Accepted by AJ with minor revision

    VETA x ray data acquisition and control system

    Get PDF
    We describe the X-ray Data Acquisition and Control System (XDACS) used together with the X-ray Detection System (XDS) to characterize the x-ray image during testing of the AXAF P1/H1 mirror pair at the MSFC X-ray Calibration Facility. A variety of x-ray data were acquired, analyzed, and archived during the testing including: mirror alignment, encircled energy, effective area, point spread function, system housekeeping, and proportional counter window uniformity data. The system architecture will be presented with emphasis placed on key features that include a layered UNIX tool approach, dedicated subsystem controllers, real-time X-window displays, flexibility in combining tools, network connectivity, and system extensibility. The VETA test data archive are also described
    corecore