1,912 research outputs found
Tilting mutation of weakly symmetric algebras and stable equivalence
We consider tilting mutations of a weakly symmetric algebra at a subset of
simple modules, as recently introduced by T. Aihara. These mutations are
defined as the endomorphism rings of certain tilting complexes of length 1.
Starting from a weakly symmetric algebra A, presented by a quiver with
relations, we give a detailed description of the quiver and relations of the
algebra obtained by mutating at a single loopless vertex of the quiver of A. In
this form the mutation procedure appears similar to, although significantly
more complicated than, the mutation procedure of Derksen, Weyman and Zelevinsky
for quivers with potentials. By definition, weakly symmetric algebras connected
by a sequence of tilting mutations are derived equivalent, and hence stably
equivalent. The second aim of this article is to study these stable
equivalences via a result of Okuyama describing the images of the simple
modules. As an application we answer a question of Asashiba on the derived
Picard groups of a class of self-injective algebras of finite representation
type. We conclude by introducing a mutation procedure for maximal systems of
orthogonal bricks in a triangulated category, which is motivated by the effect
that a tilting mutation has on the set of simple modules in the stable
category.Comment: Description and proof of mutated algebra made more rigorous (Prop.
3.1 and 4.2). Okuyama's Lemma incorporated: Theorem 4.1 is now Corollary 5.1,
and proof is omitted. To appear in Algebras and Representation Theor
Canonical time-frequency, time-scale, and frequency-scale representations of time-varying channels
Mobile communication channels are often modeled as linear time-varying
filters or, equivalently, as time-frequency integral operators with finite
support in time and frequency. Such a characterization inherently assumes the
signals are narrowband and may not be appropriate for wideband signals. In this
paper time-scale characterizations are examined that are useful in wideband
time-varying channels, for which a time-scale integral operator is physically
justifiable. A review of these time-frequency and time-scale characterizations
is presented. Both the time-frequency and time-scale integral operators have a
two-dimensional discrete characterization which motivates the design of
time-frequency or time-scale rake receivers. These receivers have taps for both
time and frequency (or time and scale) shifts of the transmitted signal. A
general theory of these characterizations which generates, as specific cases,
the discrete time-frequency and time-scale models is presented here. The
interpretation of these models, namely, that they can be seen to arise from
processing assumptions on the transmit and receive waveforms is discussed. Out
of this discussion a third model arises: a frequency-scale continuous channel
model with an associated discrete frequency-scale characterization.Comment: To appear in Communications in Information and Systems - special
issue in honor of Thomas Kailath's seventieth birthda
On Berenstein-Douglas-Seiberg Duality
I review the proposal of Berenstein-Douglas for a completely general
definition of Seiberg duality. To give evidence for their conjecture I present
the first example of a physical dual pair and explicitly check that it
satisfies the requirements. Then I explicitly show that a pair of toric dual
quivers is also dual according to their proposal. All these computations go
beyond tilting modules, and really work in the derived category. I introduce
all necessary mathematics where needed.Comment: 22 pages, LaTe
Power-Weighted Divergences for Relative Attenuation and Delay Estimation
Power-weighted estimators have recently been proposed for relative attenuation and delay estimation in blind source separation. Their provenance lies in the observation that speech is approximately windowed-disjoint orthogonal (WDO) in the time-frequency (TF) domain; it has been reported that using WDO, derived from TF representations of speech, improves mixing parameter estimation. We show that power-weighted relative attenuation and delay estimators can be derived from a particular case of a weighted Bregman divergence. We then propose a wider class of estimators, which we tune to give better parameter estimates for speech
Progression of RNA-sequencing to single-cell applications
New methods enable new discoveries. My time as a PhD student has run in parallel with the maturation of the RNA-seq method, and I have used it to discover basic properties of gene expression and transcriptomes. My part has been bioinformatics – the computer analysis of biological data.
RNA-seq quantifies gene expression for all genes in one experiment, allowing discoveries without prior knowledge, as opposed to single-gene hypothesis testing. When I started my PhD, this was done by microarray followed by qRT-PCR validation, which can be arduous. In contrast to microarrays, RNA-seq quantifies expression with little ambiguity of which gene each expression value corresponds to, and in absolute terms. But at the time, data analysis of RNA-seq was full of unknowns and there were little software available. Nowadays, partly the result of my work, the data analysis is much less complicated, and RNA-seq can be performed on diminutive samples, down to single cells, which was not viable using microarrays.
My first study (Paper I) used one of the very first RNA-seq datasets to study general features of transcriptomes, such as mean mRNA length (~1,500 nt) and the number of genes expressed per tissue (~13,000). I also found special features of some tissues: the liver transcriptome is dominated by a few highly expressed gene, brain expresses especially long mRNAs and testis expresses many more genes than other tissues. Following this tissue RNA-seq study, I evaluated a new library preparation method for single-cell RNA-seq (Paper III), developed before the prevalence of single-cell RNA-seq. I used technical replicates to show that the method was accurate and reliable for the more highly expressed genes at single-cell RNA levels, and with input RNA amounts corresponding to >50 cells it produced as good quality data as bulk RNA-seq. Then the method was applied on melanoma cells isolated from human blood, and I listed surface antigen genes that distinguished these circulating tumour cells from other cells in the blood.
This single-cell RNA-seq method was then applied on pre-implantation embryo cells (Paper IV). Using first-generation crosses between two mouse strains, I could separate the expression from the maternal and the paternal copies of the genes. I found that 12-24% of the genes express only one of their two copies in any given cell, in a random manner that affects almost all the expressed genes. I also found that the two copies are expressed independently from each other.
Finally, I studied Sox transcription factors during neural development (Paper II), combining RNA-seq and microarray data for different cell types with ChIP-seq data for transcription factor binding and histone modifications. I found that Sox proteins bind to the enhancers active in the stem cells where the Sox proteins are active, but also to enhancers specific to subsequent cells in ii development. I also found that different Sox factors bind to much the same enhancers, and that they can induce histone modifications.
In conclusion, my work has advanced the RNA-seq method and increased the understanding of transcriptional regulation and output
- …