Mobile communication channels are often modeled as linear time-varying
filters or, equivalently, as time-frequency integral operators with finite
support in time and frequency. Such a characterization inherently assumes the
signals are narrowband and may not be appropriate for wideband signals. In this
paper time-scale characterizations are examined that are useful in wideband
time-varying channels, for which a time-scale integral operator is physically
justifiable. A review of these time-frequency and time-scale characterizations
is presented. Both the time-frequency and time-scale integral operators have a
two-dimensional discrete characterization which motivates the design of
time-frequency or time-scale rake receivers. These receivers have taps for both
time and frequency (or time and scale) shifts of the transmitted signal. A
general theory of these characterizations which generates, as specific cases,
the discrete time-frequency and time-scale models is presented here. The
interpretation of these models, namely, that they can be seen to arise from
processing assumptions on the transmit and receive waveforms is discussed. Out
of this discussion a third model arises: a frequency-scale continuous channel
model with an associated discrete frequency-scale characterization.Comment: To appear in Communications in Information and Systems - special
issue in honor of Thomas Kailath's seventieth birthda