91 research outputs found

    Glycated albumin modulates the contact system with implications for the kallikrein-kinin and intrinsic coagulation systems

    Get PDF
    Background Human serum albumin (HSA) is the most abundant plasma protein and is sensitive to glycation in vivo. The chronic hyperglycemic conditions in patients with diabetes mellitus (DM) induce a nonenzymatic Maillard reaction that denatures plasma proteins and forms advanced glycation end products (AGEs). HSA-AGE is a prevalent misfolded protein in patients with DM and is associated with factor XII activation and downstream proinflammatory kallikrein-kinin system activity without any associated procoagulant activity of the intrinsic pathway. Objectives This study aimed to determine the relevance of HSA-AGE toward diabetic pathophysiology. Methods The plasma obtained from patients with DM and euglycemic volunteers was probed for activation of FXII, prekallikrein (PK), and cleaved high-molecular-weight kininogen by immunoblotting. Constitutive plasma kallikrein activity was determined via chromogenic assay. Activation and kinetic modulation of FXII, PK, FXI, FIX, and FX via in vitro–generated HSA-AGE were explored using chromogenic assays, plasma-clotting assays, and an in vitro flow model using whole blood. Results Plasma obtained from patients with DM contained increased plasma AGEs, activated FXIIa, and resultant cleaved cleaved high-molecular-weight kininogen. Elevated constitutive plasma kallikrein enzymatic activity was identified, which positively correlated with glycated hemoglobin levels, representing the first evidence of this phenomenon. HSA-AGE, generated in vitro, triggered FXIIa-dependent PK activation but limited the intrinsic coagulation pathway activation by inhibiting FXIa and FIXa-dependent FX activation in plasma. Conclusion These data indicate a proinflammatory role of HSA-AGEs in the pathophysiology of DM via FXII and kallikrein-kinin system activation. A procoagulant effect of FXII activation was lost through the inhibition of FXIa and FIXa dependent FX activation by HSA-AGEs

    Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications

    Get PDF
    © The Author(s) 2018The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.Peer reviewedFinal Published versio

    Circulating extracellular DNA is an independent predictor of mortality in elderly patients with venous thromboembolism.

    Get PDF
    Venous thromboembolism (VTE) is a major cause of morbidity and mortality in elderly patients. Extracellular DNA is a pro-inflammatory and pro-thrombotic mediator in vitro and in animal models. Levels of circulating extracellular DNA (ceDNA) are increased in VTE patients, but the association of ceDNA with VTE extent and clinical outcome is poorly understood. We analyzed the association of ceDNA with the extent of VTE, categorized as distal and proximal deep vein thrombosis and pulmonary embolism, and with the clinical outcomes VTE recurrence and mortality. We quantified ceDNA by a fluorescent probe, as well as circulating nucleosomes and neutrophil extracellular traps (NETs) by ELISA in plasma from 611 patients aged ≥ 65 years with acute VTE of a prospective cohort study (SWITCO65+). Levels of ceDNA and nucleosomes, but not NETs, correlated with VTE extent. Infectious comorbidities independently increased ceDNA levels in VTE. CeDNA strongly correlated with C-reactive protein and leukocytosis, suggesting an association of ceDNA with inflammation in VTE patients. CeDNA furthermore predicted PE-related and all-cause mortality, but not VTE recurrence, during a 3-year follow-up. Our study suggests that ceDNA levels in VTE patients reflect the degree of inflammation and may serve as a biomarker to stratify VTE patients at risk for mortality

    Ion homeostasis in the Chloroplast

    Full text link
    peer reviewedThe chloroplast is an organelle of high demand for macro- and micro-nutrient ions, which are required for the maintenance of the photosynthetic process. To avoid deficiency while preventing excess, homeostasis mechanisms must be tightly regulated. Here, we describe the needs for nutrient ions in the chloroplast and briefly highlight their functions in the chloroplastidial metabolism. We further discuss the impact of nutrient deficiency on chloroplasts and the acclimation mechanisms that evolved to preserve the photosynthetic apparatus. We finally present what is known about import and export mechanisms for these ions. Whenever possible, a comparison between cyanobacteria, algae and plants is provided to add an evolutionary perspective to the description of ion homeostasis mechanisms in photosynthesis

    Urticaria as a Presenting Prodromal Manifestation of Attacks of Hereditary Angioedema

    No full text

    Factor XII-Driven Inflammatory Reactions with Implications for Anaphylaxis

    No full text
    Anaphylaxis is a life-threatening allergic reaction. It is triggered by the release of pro-inflammatory cytokines and mediators from mast cells and basophils in response to immunologic or non-immunologic mechanisms. Mediators that are released upon mast cell activation include the highly sulfated polysaccharide and inorganic polymer heparin and polyphosphate (polyP), respectively. Heparin and polyP supply a negative surface for factor XII (FXII) activation, a serine protease that drives contact system-mediated coagulation and inflammation. Activation of the FXII substrate plasma kallikrein leads to further activation of zymogen FXII and triggers the pro-inflammatory kallikrein–kinin system that results in the release of the mediator bradykinin (BK). The severity of anaphylaxis is correlated with the intensity of contact system activation, the magnitude of mast cell activation, and BK formation. The main inhibitor of the complement system, C1 esterase inhibitor, potently interferes with FXII activity, indicating a meaningful cross-link between complement and kallikrein–kinin systems. Deficiency in a functional C1 esterase inhibitor leads to a severe swelling disorder called hereditary angioedema (HAE). The significance of FXII in these disorders highlights the importance of studying how these processes are integrated and can be therapeutically targeted. In this review, we focus on how FXII integrates with inflammation and the complement system to cause anaphylaxis and HAE as well as highlight current diagnosis and treatments of BK-related diseases

    Prostaglandin-induced VASP phosphorylation controls alpha II-spectrin breakdown in apoptotic cells.

    No full text
    In pathological conditions, the inflammatory mediator prostaglandin E2 (PGE2) has been shown to induce apoptosis through a cAMP-dependent pathway. However, underlying mechanisms have remained illusive. Irrespective whether apoptosis is induced by the intrinsic or extrinsic pathway, the cysteine protease caspase-3 becomes activated and cleaves many key proteins including spectrins. Cleavage of the plasma membrane-associated spectrins leads to cell shrinkage, membrane blebbing, the formation of apoptotic bodies, and irreversible cell death. Recently, we identified a novel interaction between alpha II-spectrin and vasodilator-stimulated phosphoprotein (VASP), which is abrogated by the cAMP-dependent protein kinase (PKA)-mediated phosphorylation of VASP. In the present study we investigated whether VASP binding to alpha II-spectrin affects spectrin breakdown in PGE2-induced apoptosis. PGE2 dose- and time-dependently triggered VASP phosphorylation. Following induction of apoptosis, caspase-3-mediated alpha II-spectrin breakdown and membrane blebbing were markedly delayed in wild-type as compared to VASP-deficient endothelial cells. This suggests that VASP binding to alpha II-spectrin attenuates alpha II-spectrin cleavage in apoptotic cells and that PGE2-induced VASP phosphorylation regulates this process. Our findings may therefore provide the molecular basis for PGE2-induced apoptosis in pathological events

    Mapping of the discontinuous H-kininogen binding site of plasma prekallikrein. Evidence for a critical role of apple domain-2

    No full text
    Plasma prekallikrein, a zymogen of the contact phase system, circulates in plasma as heterodimeric complex with H-kininogen. The binding is mediated by the prekallikrein heavy chain consisting of four apple domains, A1 to A4, to which H-kininogen binds with high specificity and affinity (K(D) = 1.2 x 10(-8) M). Previous work had demonstrated that a discontinuous kininogen-binding site is formed by a proximal part located in A1, a distal part exposed by A4, and other yet unidentified portion(s) of the kallikrein heavy chain. To detect relevant binding segment(s) we recombinantly expressed single apple domains and found a rank order of binding affinity for kininogen of A2 > A4 approximately A1 > A3. Removal of single apple domains in prekallikrein deletion mutants reduced kininogen binding by 21 (A1), 64 (A2), and 24% (A4), respectively, whereas deletion of A3 was without effect. Transposition of homologous A2 domain from prekallikrein to factor XI conferred high-affinity kininogen binding from the former to the latter. The principal role of A2 for H-kininogen docking to the prekallikrein heavy chain was further substantiated by the finding that cleavage of a single peptide bond in A2 drastically diminished the H-kininogen binding affinity. Furthermore, the epitope of monoclonal antibody PKH6 which blocks kallikrein-kininogen complex formation with an IC(50) of 8 nM mapped to the center portion of domain A2. Our data indicate that domain A2 and two flanking sequence segments of A1 and A4 form a discontinuous binding platform for H-kininogen on the prekallikrein heavy chain. Domain-specific antibodies directed to these critical sites efficiently interfered with contact phase-induced bradykinin release from H-kininoge
    corecore