62 research outputs found

    Statistics of extreme events in integrable turbulence

    Full text link
    We use the spectral kinetic theory of soliton gas to investigate the likelihood of extreme events in integrable turbulence described by the one-dimensional focusing nonlinear Schr\"odinger equation (fNLSE). This is done by invoking a stochastic interpretation of the inverse scattering transform for fNLSE and analytically evaluating the kurtosis of the emerging random nonlinear wave field in terms of the spectral density of states of the corresponding soliton gas. We then apply the general result to two fundamental scenarios of the generation of integrable turbulence: (i) the asymptotic development of the spontaneous (noise induced) modulational instability of a plane wave, and (ii) the long-time evolution of strongly nonlinear, partially coherent waves. In both cases, involving the bound state soliton gas dynamics, the analytically obtained values of the kurtosis are in perfect agreement with those inferred from direct numerical simulations of the the fNLSE, providing the long-awaited theoretical explanation of the respective rogue wave statistics. Additionally, the evolution of a particular non-bound state gas is considered providing important insights related to the validity of the so-called virial theorem.Comment: 11 pages, 5 figure

    The continuous flowering gene in rose is a floral inhibitor

    Get PDF
    In rose, RoKSN, a TFL1 homologue, is a key regulator of continuous flowering. To study the function of this gene in planta, protocols of plant transformation are needed. We complemented tfl1 Arabidopsis mutants and ectopically expressed RoKSN in a continuous-flowering rose. In Arabidopsis, RoKSN complemented the tfl1 mutant by rescuing late flowering and indeterminate growth. In continuous-flowering rose, the ectopic expression of RoKSN led to the absence of flowering. In these transgenic roses, a study of genes implied in the floral regulation was carried out. The floral activator transcripts decreased whereas the FD transcription factor is up-regulated. We conclude that RoKSN is a floral repressor and could regulate the expression of transcripts as RoFT and RoFD. These results could strengthen a mechanism of competitive interactions of RoFT and RoKSN with a common partner, FD to move towards flowering or vegetative developments

    RoKSN, a floral repressor, forms protein complexes with RoFD and RoFT to regulate vegetative and reproductive development in rose

    Get PDF
    FT/TFL1 family members have been known to be involved in the development and flowering in plants. In rose, RoKSN, a TFL1 homologue, is a key regulator of flowering, whose absence causes continuous flowering. Our objectives are to functionally validate RoKSN and to explore its mode of action in rose.We complemented Arabidopsis tfl1 mutants and ectopically expressed RoKSN in a continuous-flowering (CF) rose. Using different protein interaction techniques, we studied RoKSN interactions with RoFD and RoFT and possible competition. In Arabidopsis, RoKSN complemented the tfl1 mutant by rescuing late flowering and indeterminate growth. In CF roses, the ectopic expression of RoKSN led to the absence of flowering. Different branching patterns were observed and some transgenic plants had an increased number of leaflets per leaf. In these transgenic roses, floral activator transcripts decreased. Furthermore, RoKSN was able to interact both with RoFD and the floral activator, RoFT. Protein interaction experiments revealed that RoKSN and RoFT could compete with RoFD for repression and activation of blooming, respectively. We conclude that RoKSN is a floral repressor and is also involved in the vegetative development of rose. RoKSN forms a complex with RoFD and could compete with RoFT for repression of flowering

    Analysis of laser radiation using the Nonlinear Fourier transform

    Get PDF
    Modern high-power lasers exhibit a rich diversity of nonlinear dynamics, often featuring nontrivial co-existence of linear dispersive waves and coherent structures. While the classical Fourier method adequately describes extended dispersive waves, the analysis of time-localised and/or non-stationary signals call for more nuanced approaches. Yet, mathematical methods that can be used for simultaneous characterisation of localized and extended fields are not yet well developed. Here, we demonstrate how the Nonlinear Fourier transform (NFT) based on the Zakharov-Shabat spectral problem can be applied as a signal processing tool for representation and analysis of coherent structures embedded into dispersive radiation. We use full-field, real-time experimental measurements of mode-locked pulses to compute the nonlinear pulse spectra. For the classification of lasing regimes, we present the concept of eigenvalue probability distributions. We present two field normalisation approaches, and show the NFT can yield an effective model of the laser radiation under appropriate signal normalisation conditions

    Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers

    Get PDF
    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatiooral intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach

    Diagnostic accuracy of contrast-enhanced MR angiography in severe carotid stenosis: meta-analysis with metaregression of different techniques

    Get PDF
    Contrast-enhanced magnetic resonance angiography (CE-MRA) has become a well-established noninvasive imaging method for the assessment of severe carotid stenosis (70–99% by NASCET criteria). However, CE-MRA is not a standardised technique, but encompasses different concurrent techniques. This review analyses possible differences. A bivariate random effects meta-analysis of 17 primary diagnostic accuracy studies confirmed a high pooled sensitivity of 94.3% and specificity of 93.0% for carotid CE-MRA in severe carotid stenosis. Sensitivity was fairly uniform among the studies, while specificity showed significant variation (I2 = 73%). Metaregressions found significant differences for specificity with two covariates: specificity was higher when using not only maximum intensity projection (MIP) images, but also three-dimensional (3D) images (P = 0.01). Specificity was also higher with electronic images than with hardcopies (P = 0.02). The timing technique (bolus-timed, fluoroscopically triggered or time-resolved) did not result in any significant differences in diagnostic accuracy. Some nonsignificant trends were found for the percentages of severe carotid disease, acquisition time and voxel size. In conclusion, in CE-MRA of severe carotid stenosis the three major timing techniques yield comparably high diagnostic accuracy, electronic images are more specific than hardcopies, and 3D images should be used in addition to MIP images to increase the specificity

    Control of Flowering in Strawberries

    Get PDF
    Strawberries (Fragaria sp.) are small perennial plants capable of both sexual reproduction through seeds and clonal reproduction via runners. Because vegetative and generative developmental programs are tightly connected, the control of flowering is presented here in the context of the yearly growth cycle. The rosette crown of strawberry consists of a stem with short internodes produced from the apical meristem. Each node harbors one trifoliate leaf and an axillary bud. The fate of axillary buds is dictated by environmental conditions; high temperatures and long days (LDs) promote axillary bud development into runners, whereas cool temperature and short days (SDs) favor the formation of branch crowns. SDs and cool temperature also promote flowering; under these conditions, the main shoot apical meristem is converted into a terminal inflorescence, and vegetative growth is continued from the uppermost axillary branch crown. The environmental factors that regulate vegetative and generative development in strawberries have been reasonably well characterized and are reviewed in the first two chapters. The genetic basis of the physiological responses in strawberries is much less clear. To provide a point of reference for the flowering pathways described in strawberries so far, a short review on the molecular mechanisms controlling flowering in the model plant Arabidopsis is given. The last two chapters will then describe the current knowledge on the molecular mechanisms controlling the physiological responses in strawberries.Peer reviewe
    • …
    corecore