356 research outputs found

    Switch Bandwidth Congestion Prediction in Cloud Environment

    Get PDF
    AbstractCloud environment is mainly used to store and analyze large volumes of data .The major benefits of hosting the applications using cloud environment are storing large volume of data and performing live data analytics. Cloud systems have switches, which serves as an interface connecting and sharing the data with each other. Network bandwidth congestion is caused when large volumes of data are moved to node or cluster in the cloud environment which in- turn creates Service Level Agreement (SLA) violation for the cloud application service. The result of SLA violation includes impact on working of the entire cloud service .The proposed Network Bandwidth Congestion Prediction framework (NBCPF) predicts the bandwidth congestion using weighted random early detection, to avoids the SLA violation for applications services. NBCPF arrests the bandwidth congestion in cloud environment by prediction of switches in cloud environment resulting in accurately identifying the exact task involved in creation of jobs or services

    Isolation of the Anabaena sp. strain PCC 7120 sigA gene in a transcriptional-interference selection.

    Get PDF
    A transcriptional-interference selection was performed to identify genes of Anabaena sp. strain PCC 7120 that encode DNA-binding proteins able to bind to the rbcL promoter. Unexpectedly, the selection yielded the previously identified sigA gene, which encodes the principal sigma factor. Protein extracts from Escherichia coli containing the sigA gene bound the rbcL promoter fragment in mobility shift assays, and competition experiments indicated binding to rbcL and glnA but not xisA or nifH upstream regions

    A Generic Primary-control Model for Grid-forming Inverters: Towards Interoperable Operation & Control

    Get PDF
    This paper outlines an architectural vision centered around the notion of interoperability to integrate grid-forming inverter-based resources in large-scale grids. With the underlying principle of interoperability guiding developments, we focus on modeling the characteristics of droop, virtual synchronous machine, and virtual oscillator controls. Emphasis is placed on these three controllers since they are leading grid-forming control candidates and are likely to be commonplace as primary-control schemes in future systems. We show that these controllers can each be considered as instantiations of a more generic model and that all these controllers exhibit similar droop-like relations between pertinent terminal variables in steady state. This commonality between controllers gives interoperability among them such that automatic synchronization, power sharing, and voltage regulation can be achieved. Simulation results validate the models and demonstrate how the steady-state droop characteristics of these control methods can be aligned with the aid of the developed modeling paradigm

    Production of π0\pi^0 and η\eta mesons in U++U collisions at sNN=192\sqrt{s_{_{NN}}}=192 GeV

    Full text link
    The PHENIX experiment at the Relativistic Heavy Ion Collider measured π0\pi^0 and η\eta mesons at midrapidity in U++U collisions at sNN=192\sqrt{s_{_{NN}}}=192 GeV in a wide transverse momentum range. Measurements were performed in the π0(η)γγ\pi^0(\eta)\rightarrow\gamma\gamma decay modes. A strong suppression of π0\pi^0 and η\eta meson production at high transverse momentum was observed in central U++U collisions relative to binary scaled pp++pp results. Yields of π0\pi^0 and η\eta mesons measured in U++U collisions show similar suppression pattern to the ones measured in Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV for similar numbers of participant nucleons. The η\eta/π0\pi^0 ratios do not show dependence on centrality or transverse momentum, and are consistent with previously measured values in hadron-hadron, hadron-nucleus, nucleus-nucleus, and e+ee^+e^- collisions.Comment: 403 authors from 72 institutions, 13 pages, 6 figures, 7 tables, 2012 data. v2 is version accepted by Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of jet-medium interactions via direct photon-hadron correlations in Au++Au and dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    We present direct photon-hadron correlations in 200 GeV/A Au++Au, dd++Au and pp++pp collisions, for direct photon pTp_T from 5--12 GeV/cc, collected by the PHENIX Collaboration in the years from 2006 to 2011. We observe no significant modification of jet fragmentation in dd++Au collisions, indicating that cold nuclear matter effects are small or absent. Hadrons carrying a large fraction of the quark's momentum are suppressed in Au++Au compared to pp++pp and dd++Au. As the momentum fraction decreases, the yield of hadrons in Au++Au increases to an excess over the yield in pp++pp collisions. The excess is at large angles and at low hadron pTp_T and is most pronounced for hadrons associated with lower momentum direct photons. Comparison to theoretical calculations suggests that the hadron excess arises from medium response to energy deposited by jets.Comment: 578 authors from 80 institutions, 11 pages, 7 figures, data from 2007, 2008, 2010, and 2011. v2 is version accepted for publication in Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore