10 research outputs found

    A mechanized semantics for C++ object construction and destruction, with applications to resource management

    Get PDF
    International audienceWe present a formal operational semantics and its Coq mechanization for the C++ object model, featuring object construction and destruction, shared and repeated multiple inheritance, and virtual function call dispatch. These are key C++ language features for high-level system programming, in particular for predictable and reliable resource management. This paper is the first to present a formal mechanized account of the metatheory of construction and destruction in C++, and applications to popular programming techniques such as "resource acquisition is initialization." We also report on irregularities and apparent contradictions in the ISO C++03 and C++11 standards

    A First Step in the Translation of Alloy to Coq

    Get PDF
    International audienceAlloy is both a formal language and a tool for software mod-eling. The language is basically first order relational logic. The analyzer is based on instance finding: it tries to refute assertions and if it succeeds it reports a counterexample. It works by translating Alloy models and instance finding into SAT problems. If no instance is found it does not mean the assertion is satisfied. Alloy relies on the small scope hypothesis: examining all small cases is likely to produce interesting counterexamples. This is very valuable when developing a system. However, Alloy cannot show their absence. In this paper, we propose an approach where Alloy can be used as a first step, and then using a tool we develop, Alloy models can be translated to Coq code to be proved correct interactively

    Automating Algebraic Specifications of Non-freely Generated Data Types

    No full text
    Abstract. Non-freely generated data types are widely used in case studies carried out in the theorem prover KIV. The most common examples are stores, sets and arrays. We present an automatic method that generates finite counterexamples for wrong conjectures and therewith offers a valuable support for proof engineers saving their time otherwise spent on unsuccessful proof attempts. The approach is based on the finite model finding and uses Alloy Analyzer [1] to generate finite instances of theories in KIV [6]. Most definitions of functions or predicates on infinite structures do not preserve the semantics if a transition to arbitrary finite substructures is made. We propose the constraints which should be satisfied by the finite substructures, identify a class of amenable definitions and present a practical realization using Alloy. The technique is evaluated on the library of basic data types as well as on some examples from case studies in KIV

    A minimalistic verified bootstrapped compiler (proof pearl)

    No full text
    \ua9 2021 ACM. This paper shows how a small verified bootstrapped compiler can be developed inside an interactive theorem prover (ITP). Throughout, emphasis is put on clarity and minimalism
    corecore