1,053 research outputs found
Origin and stability of the dipolar response in a family of tetragonal tungsten bronze relaxors
A new family of relaxor dielectrics with the tetragonal tungsten bronze
structure (nominal composition Ba6M3+Nb9O30, M3+ = Ga, Sc or In) were studied
using dielectric spectroscopy to probe the dynamic dipole response and
correlate this with the crystal structure as determined from powder neutron
diffraction. Independent analyses of real and imaginary parts of the complex
dielectric function were used to determine characteristic temperature
parameters, TVF, and TUDR, respectively. In each composition both these
temperatures correlated with the temperature of maximum crystallographic
strain, Tc/a determined from diffraction data. The overall behaviour is
consistent with dipole freezing and the data indicate that the dipole stability
increases with increasing M3+ cation size as a result of increased
tetragonality of the unit cell. Crystallographic data suggests that these
materials are uniaxial relaxors with the dipole moment predominantly restricted
to the B1 cation site in the structure. Possible origins of the relaxor
behaviour are discussed.Comment: Main article 32 pages, 8 figures; Supplementary data 24 pages, 4
figure
Temperature dependence of piezoelectric properties of high- TC Bi (Mg1/2Ti1/2) O3 - PbTiO3
The temperature dependence of both polarization and electric-field induced strain was investigated for (1-x)Bi(Mg1/2Ti1/2)O-3-xPbTiO(3) (x=0.36, 0.37, and 0.38), with the morphotropic phase boundary located at x=0.37. Remanent polarization (P-r) and maximum polarization (P-max) of all compositions are enhanced with increasing temperature up to 175 degrees C, which is rationalized as improved domain switching due to reduced tetragonality (c/a). The hysteresis during unipolar electric cycling tends to decrease with increase in the fraction of tetragonal phase. Temperature dependent x-ray diffraction demonstrates that switched non-180 degrees domains are stable against thermal depoling above 200 degrees C, which indicates that the currently investigated materials are suitable for high temperature applications. This promising high-T-C piezoelectric is further discussed with reference to oxygen octahedron of the tilted R3c and untilted R3m space groups and the tolerance factor (t).open371
Domain switching energies: Mechanical versus electrical loading in La-doped bismuth ferrite-lead titanate
The mechanical stress-induced domain switching and energy dissipation in morphotropic phase boundary (1 - x)(Bi(1-y)La(y))FeO(3)-xPbTiO(3) during uniaxial compressive loading have been investigated at three different temperatures. The strain obtained was found to decrease with increasing lanthanum content, although a sharp increase in strain was observed for compositions doped with 7.5 and 10 at. % La. Increased domain switching was found in compositions with decreased tetragonality. This is discussed in terms of the competing influences of the amount of domain switching and the spontaneous strain on the macroscopic behavior under external fields. Comparison of the mechanically and electrically dissipated energy showed significant differences, discussed in terms of the different microscopic interactions of electric field and stress.open10
Dielectric nonlinearity of relaxor ferroelectric ceramics at low ac drives
Dielectric nonlinear response of
(PbMgNbO)(PbTiO) (0.9PMN-0.1PT) relaxor
ceramics was investigated under different ac drive voltages. It was observed
that: (i) the dielectric permittivity is independent on ac field amplitude at
high temperatures; (ii) with increasing ac drive, the permittivity maximum
increases, and the temperature of the maximum shifts to lower temperature;
(iii) the nonlinear effect is weakened when the measurement frequency
increases. The influences of increasing ac drive were found to be similar to
that of decreasing frequency. It is believed that the dielectric nonlinearities
of relaxors at low drives can be explained by the phase transition theory of
ergodic space shrinking in succession. A Monte Carlo simulation was performed
on the flips of micro polarizations at low ac drives to verify the theory.Comment: Submitted to J. Phys.: Cond. Matte
Monoclinic phase in the relaxor-based piezo-/ ferroelectric Pb(MgNb-PbTiO system
A ferroelectric monoclinic phase of space group ( type) has been
discovered in 0.65Pb(MgNb-0.35PbTiO by means of high
resolution synchrotron X-ray diffraction. It appears at room temperature in a
single crystal previously poled under an electric field of 43 kV/cm applied
along the pseudocubic [001] direction, in the region of the phase diagram
around the morphotropic phase boundary between the rhombohedral (R3m) and the
tetragonal (P4mm) phases. The monoclinic phase has lattice parameters a = 5.692
A, b = 5.679 A, c = 4.050 A and = , with the b-axis
oriented along the pseudo-cubic [110] direction . It is similar to the
monoclinic phase observed in PbZrTiO, but different from that
recently found in Pb(ZnNb-PbTiO, which is of space
group ( type).Comment: Revised version after referees' comments. PDF file. 6 pages, 4
figures embedde
CVM studies on the atomic ordering in complex perovskite alloys
The atomic ordering in complex perovskite alloys is investigated by the
cluster variation method (CVM). For the 1/3\{111\}-type ordered structure, the
order-disorder phase transition is the first order, and the order parameter of
the 1:2 complex perovskite reaches its maximum near x=0.25. For the
1/2\{111\}-type ordered structure, the ordering transition is the second order.
Phase diagrams for both ordered structures are obtained. The order-disorder
line obeys the linear law.Comment: 10 pages, 6 figure
An Investigation Demonstrating the Feasibility of Microwave Sintering of Base-Metal-Electrode Multilayer Capacitors
Abstract. A microwave sintering technique has been developed for base-metal electrode (BME) multilayer ceramic capacitors (MLCCs). Commercial green chips of size 0603 MLC with nickel electrodes were sintered in a microwave field. With a specially designed susceptor/insulation package to optimize coupling and uniformity of heating, a number of sintering experiments were conducted in the temperature range of 1200 to 1250 • C in a multimode microwave cavity operating at 2.45 GHz under a partially reducing atmosphere. Microstructure of the microwave processed MLCCs was investigated with both SEM and TEM techniques. The dielectric properties of the microwave sintered MLCCs were measured and compared with those sintered using conventional process at 1320 • C and lower pO 2 's ≈ 10 −9 atms. The results demonstrate that nickel electrodes remain metallic after microwave sintering even though the pO 2 's were relatively high and would thermodynamically favor NiO. The microwave sintered samples showed a dense, fine and uniform microstructure. The properties of the microwavesintered samples were comparable to the conventionally sintered samples. The microwave processing was found to have enhanced sintering kinetics of the BME MLCCs, lowering sintering temperature by about 100 • C and also the processing time by about 90%
3D Variation in delineation of head and neck organs at risk
<p>Abstract</p> <p>Background</p> <p>Consistent delineation of patient anatomy becomes increasingly important with the growing use of highly conformal and adaptive radiotherapy techniques. This study investigates the magnitude and 3D localization of interobserver variability of organs at risk (OARs) in the head and neck area with application of delineation guidelines, to establish measures to reduce current redundant variability in delineation practice.</p> <p>Methods</p> <p>Interobserver variability among five experienced radiation oncologists was studied in a set of 12 head and neck patient CT scans for the spinal cord, parotid and submandibular glands, thyroid cartilage, and glottic larynx. For all OARs, three endpoints were calculated: the Intraclass Correlation Coefficient (ICC), the Concordance Index (CI) and a 3D measure of variation (3D SD).</p> <p>Results</p> <p>All endpoints showed largest interobserver variability for the glottic larynx (ICC = 0.27, mean CI = 0.37 and 3D SD = 3.9 mm). Better agreement in delineations was observed for the other OARs (range, ICC = 0.32-0.83, mean CI = 0.64-0.71 and 3D SD = 0.9-2.6 mm). Cranial, caudal, and medial regions of the OARs showed largest variations. All endpoints provided support for improvement of delineation practice.</p> <p>Conclusions</p> <p>Variation in delineation is traced to several regional causes. Measures to reduce this variation can be: (1) guideline development, (2) joint delineation review sessions and (3) application of multimodality imaging. Improvement of delineation practice is needed to standardize patient treatments.</p
Development of Ferroelectric Order in Relaxor (1-x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3
The microstructure and phase transition in relaxor ferroelectric
Pb(Mg1/3Nb2/3)O3 (PMN) and its solid solution with PbTiO3 (PT), PMN-xPT, remain
to be one of the most puzzling issues of solid state science. In the present
work we have investigated the evolution of the phase symmetry in PMN-xPT
ceramics as a function of temperature (20 K < T < 500 K) and composition (0 <=
x <= 0.15) by means of high-resolution synchrotron x-ray diffraction.
Structural analysis based on the experimental data reveals that the
substitution of Ti^4+ for the complex B-site (Mg1/3Nb2/3)^4+ ions results in
the development of a clean rhombohedral phase at a PT-concentration as low as
5%. The results provide some new insight into the development of the
ferroelectric order in PMN-PT, which has been discussed in light of the
kinetics of polar nanoregions and the physical models of the relaxor
ferroelectrics to illustrate the structural evolution from a relaxor to a
ferroelectric state.Comment: Revised version with updated references; 9 pages, 4 figures embedde
Phase diagram of the ferroelectric-relaxor (1-x)PbMg(1/3)Nb(2/3)O3-xPbTiO3
Synchrotron x-ray powder diffraction measurements have been performed on
unpoled ceramic samples of (1-x)PbMg(1/3)Nb(2/3)O3-xPbTiO3 (PMN-xPT) with 30%<=
x<= 39% as a function of temperature around the morphotropic phase boundary
(MPB), which is the line separating the rhombohedral and tetragonal phases in
the phase diagram. The experiments have revealed very interesting features
previously unknown in this or related systems. The sharp and well-defined
diffraction profiles observed at high and intermediate temperatures in the
cubic and tetragonal phases, respectively, are in contrast to the broad
features encountered at low temperatures. These peculiar characteristics, which
are associated with the monoclinic phase of MC-type previously reported by Kiat
et al and Singh et al., can only be interpreted as multiple coexisting
structures with MC as the major component. An analysis of the diffraction
profiles has allowed us to properly characterize the PMN-xPT phase diagram and
to determine the stability region of the monoclinic phase, which extends from
x= 31% to x= 37% at 20 K. The complex lansdcape of observed phases points to an
energy balance between the different PMN-xPT phases which is intrinsically much
more delicate than that of related systems such as PbZr(1-x)TixO3 or
(1-x)PbZn(1/3)Nb(1/3)O3-xPbTiO3. These observations are in good accord with an
optical study of x= 33% by Xu et al., who observed monoclinic domains with
several different polar directions coexisting with rhombohedral domains, in the
same single crystal.Comment: REVTeX4, 11 pages, 10 figures embedde
- …