888,009 research outputs found

    Single-particle dynamics of the Anderson model: a two-self-energy description within the numerical renormalization group approach

    Full text link
    Single-particle dynamics of the Anderson impurity model are studied using both the numerical renormalization group (NRG) method and the local moment approach (LMA). It is shown that a 'two-self-energy' description of dynamics inherent to the LMA, as well as a conventional 'single-self-energy' description, arise within NRG; each yielding correctly the same local single-particle spectrum. Explicit NRG results are obtained for the broken symmetry spectral constituents arising in a two-self-energy description, and the total spectrum. These are also compared to analytical results obtained from the LMA as implemented in practice. Very good agreement between the two is found, essentially on all relevant energy scales from the high-energy Hubbard satellites to the low-energy Kondo resonance.Comment: 12 pages, 6 figure

    Transonic off-design drag and performance of three mixed-compression axisymmetric inlets

    Get PDF
    An experimental investigation was conducted to determine the off-design drag and pressure performance of three axisymmetric supersonic inlets in the transonic speed range. For typical engine airflows at Mach 0.8 the drag coefficient varied from 0.045 to 0.09; at Mach 1.2 the largest drag coefficient measured was 0.25. Below Mach 0.9 a lower drag resulted when all or at least part of the excess weight flow was spilled over the cowl rather than through the bypass doors; above Mach 1.1 the lowest drag was obtained by bypassing excess flow

    Transonic off-design drag and performance of an axisymmetric inlet with 40 percent internal contraction on design

    Get PDF
    An experimental investigation determined the drag and pressure performance of an axisymmetric supersonic inlet when operated in the transonic speed range. The inlet configuration was derived from a Mach 2.5 mixed compression inlet design with assumed variable geometry. At typical engine airflows the drag coefficient varied from 0.057 to 0.192 when the Mach number changed from 0.80 to 1.27. The presence of a wing simulator resulted in a sizable increase in total drag at Mach 1.2. This interference drag, which is roughly a 0.1 increase in drag coefficient, originates equally from an increase in both additive and cowl pressure drag

    Parasites Recovered From Overwintering Mimosa Webworm, \u3ci\u3eHomadaula Anisocentra\u3c/i\u3e (Lepidoptera: Plutellidae)

    Get PDF
    The mimosa webworm, Homadaula anisocentra, overwinters in the pupal stage. Two parasites, Parania geniculata and Elasmus albizziae, are associated with overwintering pupae or the immediate prepupal larvae. Combined parasitism during the winters of 1981-82,1982-83, and 1983-84 was 2.1,3.9, and 2.9%, respectively

    Pseudomorphic Growth of a Single Element Quasiperiodic Ultrathin Film on a Quasicrystal Substrate

    Get PDF
    An ultrathin film with a periodic interlayer spacing was grown by the deposition of Cu atoms on thefivefold surface of the icosahedral Al70 Pd21 Mn9 quasicrystal. For coverages from 5 to 25 monolayers, a distinctive quasiperiodic low-energy electron diffraction pattern is observed. Scanning tunneling microscopy images show that the in-plane structure comprises rows having separations of S = 4.5 �0.2 �A and L = 7.3 0.3 A, whose ratio equals � =1.618... within experimental error. The sequences of such row separations form segments of terms of the Fibonacci sequence, indicative of the formation of a pseudomorphic Cu film

    A model for the accidental catalysis of protein unfolding in vivo

    Get PDF
    Activated processes such as protein unfolding are highly sensitive to heterogeneity in the environment. We study a highly simplified model of a protein in a random heterogeneous environment, a model of the in vivo environment. It is found that if the heterogeneity is sufficiently large the total rate of the process is essentially a random variable; this may be the cause of the species-to-species variability in the rate of prion protein conversion found by Deleault et al. [Nature, 425 (2003) 717].Comment: 5 pages, 2 figure

    Metal-superconductor transition at zero temperature: A case of unusual scaling

    Full text link
    An effective field theory is derived for the normal metal-to-superconductor quantum phase transition at T=0. The critical behavior is determined exactly for all dimensions d>2. Although the critical exponents \beta and \nu do not exist, the usual scaling relations, properly reinterpreted, still hold. A complete scaling description of the transition is given, and the physics underlying the unusual critical behavior is discussed. Quenched disorder leads to anomalously strong T_c-fluctuations which are shown to explain the experimentally observed broadening of the transition in low-T_c thin films.Comment: 4 pp., no figs, final version as publishe

    F100(3) parallel compressor computer code and user's manual

    Get PDF
    The Pratt & Whitney Aircraft multiple segment parallel compressor model has been modified to include the influence of variable compressor vane geometry on the sensitivity to circumferential flow distortion. Further, performance characteristics of the F100 (3) compression system have been incorporated into the model on a blade row basis. In this modified form, the distortion's circumferential location is referenced relative to the variable vane controlling sensors of the F100 (3) engine so that the proper solution can be obtained regardless of distortion orientation. This feature is particularly important for the analysis of inlet temperature distortion. Compatibility with fixed geometry compressor applications has been maintained in the model
    • …
    corecore