23 research outputs found

    Tracking Cats: Problems with Placing Feline Carnivores on δ18O, δD Isoscapes

    Get PDF
    Several felids are endangered and threatened by the illegal wildlife trade. Establishing geographic origin of tissues of endangered species is thus crucial for wildlife crime investigations and effective conservation strategies. As shown in other species, stable isotope analysis of hydrogen and oxygen in hair (δD(h), δ(18)O(h)) can be used as a tool for provenance determination. However, reliably predicting the spatial distribution of δD(h) and δ(18)O(h) requires confirmation from animal tissues of known origin and a detailed understanding of the isotopic routing of dietary nutrients into felid hair.We used coupled δD(h) and δ(18)O(h) measurements from the North American bobcat (Lynx rufus) and puma (Puma concolor) with precipitation-based assignment isoscapes to test the feasibility of isotopic geo-location of felidae. Hairs of felid and rabbit museum specimens from 75 sites across the United States and Canada were analyzed. Bobcat and puma lacked a significant correlation between H/O isotopes in hair and local waters, and also exhibited an isotopic decoupling of δ(18)O(h) and δD(h). Conversely, strong δD and δ(18)O coupling was found for key prey, eastern cottontail rabbit (Sylvilagus floridanus; hair) and white-tailed deer (Odocoileus virginianus; collagen, bone phosphate).Puma and bobcat hairs do not adhere to expected pattern of H and O isotopic variation predicted by precipitation isoscapes for North America. Thus, using bulk hair, felids cannot be placed on δ(18)O and δD isoscapes for use in forensic investigations. The effective application of isotopes to trace the provenance of feline carnivores is likely compromised by major controls of their diet, physiology and metabolism on hair δ(18)O and δD related to body water budgets. Controlled feeding experiments, combined with single amino acid isotope analysis of diets and hair, are needed to reveal mechanisms and physiological traits explaining why felid hair does not follow isotopic patterns demonstrated in many other taxa

    Electron microscopy and diffraction studies of suspension-plasma-sprayed ZrO2+8 wt.% Y2O3 coatings

    No full text
    International audienceThe microstructure of ZrO2+8 wt.% Y2O3 coatings has been studied by means of transmission electron microscopy (TEM) including selected-area electron diffraction (SAED) and electron backscatter diffraction (EBSD). The coatings were suspension-plasma-sprayed onto stainless steel substrates. The parameters spray distance and torch scan speed had been varied. Both diffraction methods have confirmed the tetragonal lattice structure of the suspension-plasma-sprayed zirconia. The combination of TEM and EBSD allowed a detailed analysis of the size, shape and orientation of grains. The microstructure of the coatings is mainly lamellar, consisting of columnar grains. Additional microstructural features indicate that powder particles have been subjected to different modifications during spraying. The influence of the variation of spraying parameters on the microstructure is marginal

    Stable isotope analysis of modern human hair collected from Asia (China, India, Mongolia, and Pakistan)

    No full text
    We report isotopic data (δ2H, δ18O n = 196; δ13C, δ15N n = 142; δ34S n = 85) from human hair and drinking water (δ2H, δ18O n = 67) collected across China, India, Mongolia, and Pakistan. Hair isotope ratios reflected the large environmental isotopic gradients and dietary differences. Geographic information was recorded in H and O and to a lesser extent, S isotopes. H and O data were entered into a recently developed model describing the relationship between the H and O isotope composition of human hair and drinking water in modern USA and pre-globalized populations. This has anthropological and forensic applications including reconstructing environment and diet in modern and ancient human hair. However, it has not been applied to a modern population outside of the USA, where we expect different diet. Relationships between H and O isotope ratios in drinking water and hair of modern human populations in Asia were different to both modern USA and pre-globalized populations. However, the Asian dataset was closer to the modern USA than to pre-globalized populations. Model parameters suggested slightly higher consumption of locally producedfoods in our sampled population than modern USA residents, but lower than pre-globalized populations. The degree of in vivo amino acid synthesis was comparable to both the modern USA and pre-globalized populations. C isotope ratios reflected the predominantly C3-based regional agriculture and C4 consumption in northernChina. C, N, and S isotope ratios supported marine food consumption in some coastal locales. N isotope ratios suggested a relatively low consumption of animal-derived products compared to western populations. Am J Phys Anthropol 2010. © 2009 Wiley-Liss, Inc

    Hydrogen and oxygen isotope ratios in human hair are related to geography

    No full text
    We develop and test a model to predict the geographic region-of-origin of humans based on the stable isotope composition of their scalp hair. This model incorporates exchangeable and nonexchangeable hydrogen and oxygen atoms in amino acids to predict the δ2H and δ18O values of scalp hair (primarily keratin). We evaluated model predictions with stable isotope analyses of human hair from 65 cities across the United States. The model, which predicts hair isotopic composition as a function of drinking water, bulk diet, and dietary protein isotope ratios, explains >85% of the observed variation and reproduces the observed slopes relating the isotopic composition of hair samples to that of local drinking water. Based on the geographical distributions of the isotope ratios of tap waters and the assumption of a “continental supermarket” dietary input, we constructed maps of the expected average H and O isotope ratios in human hair across the contiguous 48 states. Applications of this model and these observations are extensive and include detection of dietary information, reconstruction of historic movements of individuals, and provision of region-of-origin information for unidentified human remains

    Differences in stable isotopes in blood and feathers of seabirds are consistent across species, age and latitude: implications for food web studies

    Get PDF
    Stable isotopes of growing feathers and blood both represent assimilated diet, and both tissues are used to study the diet and foraging distribution of marine and terrestrial birds. Although most studies have assumed that both tissues represent a difference of one trophic level to diet, the enrichment factors of blood and feathers may differ, especially where endogenous reserves are used as precursors during feather synthesis. In this study, we compare carbon and nitrogen stable isotopes of blood and simultaneously growing feathers of five species of Procellariiformes, representing five genera, different geographical regions and different life stages (chicks and adults). In all species, feathers were enriched in N-15 and C-13 compared with blood. Isotopic values of carbon and nitrogen were correlated in different tissues growing simultaneously for most species analyzed, suggesting that mathematical corrections could be used to compare different tissues. Our results imply that more care needs to be taken when comparing stable isotope signatures across studies assuming different tissues are equivalent indicators of trophic ecolog
    corecore