258 research outputs found

    No association between polymorphisms in the BDNF gene and age at onset in Huntington disease

    Get PDF
    BACKGROUND: Recent evidence suggests that brain-derived neurotrophic factor (BDNF) is an attractive candidate for modifying age at onset (AO) in Huntington disease (HD). In particular, the functional Val66Met polymorphism appeared to exert a significant effect. Here we evaluate BDNF variability with respect to AO of HD using markers that represent the entire locus. METHODS: Five selected tagging polymorphisms were genotyped across a 65 kb region comprising the BDNF gene in a well established cohort of 250 unrelated German HD patients. RESULTS: Addition of BDNF genotype variations or one of the marker haplotypes to the effect of CAG repeat lengths did not affect the variance of the AO. CONCLUSION: We were unable to verify a recently reported association between the functional Val66Met polymorphism in the BDNF gene and AO in HD. From our findings, we conclude that neither sequence variations in nor near the gene contribute significantly to the variance of AO

    Oppositional COMT Val158Met effects on resting state functional connectivity in adolescents and adults

    No full text
    © 2014, The Author(s).Prefrontal dopamine levels are relatively increased in adolescence compared to adulthood. Genetic variation of COMT (COMT Val158Met) results in lower enzymatic activity and higher dopamine availability in Met carriers. Given the dramatic changes of synaptic dopamine during adolescence, it has been suggested that effects of COMT Val158Met genotypes might have oppositional effects in adolescents and adults. The present study aims to identify such oppositional COMT Val158Met effects in adolescents and adults in prefrontal brain networks at rest. Resting state functional connectivity data were collected from cross-sectional and multicenter study sites involving 106 healthy young adults (mean age 24 ± 2.6 years), gender matched to 106 randomly chosen 14-year-olds. We selected the anterior medial prefrontal cortex (amPFC) as seed due to its important role as nexus of the executive control and default mode network. We observed a significant age-dependent reversal of COMT Val158Met effects on resting state functional connectivity between amPFC and ventrolateral as well as dorsolateral prefrontal cortex, and parahippocampal gyrus. Val homozygous adults exhibited increased and adolescents decreased connectivity compared to Met homozygotes for all reported regions. Network analyses underscored the importance of the parahippocampal gyrus as mediator of observed effects. Results of this study demonstrate that adolescent and adult resting state networks are dose-dependently and diametrically affected by COMT genotypes following a hypothetical model of dopamine function that follows an inverted U-shaped curve. This study might provide cues for the understanding of disease onset or dopaminergic treatment mechanisms in major neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder

    Excess of serotonin affects neocortical pyramidal neuron migration

    Get PDF
    The serotonin transporter (SERT) is a key molecule involved in the homeostasis of extracellular levels of serotonin and is regulated developmentally. Genetic deletion of SERT in rodents increases extracellular levels of serotonin and affects cellular processes involved in neocortical circuit assembly such as barrel cortex wiring and cortical interneuron migration. Importantly, pharmacological blockade of SERT during brain development leads to phenotypes relevant to psychiatry in rodents and to an increased risk for autism spectrum disorders in humans. Furthermore, developmental adversity interacts with genetically-driven variations of serotonin function in humans and nonhuman primates to increase the risk for a variety of stress-related phenotypes. In this study, we investigate whether an excess of serotonin affects the migration of neocortical pyramidal neurons during development. Using in utero electroporation combined with time-lapse imaging to specifically monitor pyramidal neurons during late mouse embryogenesis, we show that an excess of serotonin reversibly affects the radial migration of pyramidal neurons. We further identify that the serotonin receptor 5-HT6 is expressed in pyramidal neuron progenitors and that 5-HT6 receptor activation replicates the effects of serotonin stimulation. Finally, we show that the positioning of superficial layer pyramidal neurons is altered in vivo in SERT knockout mice. Taken together, these results indicate that a developmental excess of serotonin decreases the migration speed of cortical pyramidal neurons, affecting a fundamental step in the assembly of neural circuits. These findings support the hypothesis that developmental dysregulation of serotonin homeostasis has detrimental effects on neocortical circuit formation and contributes to increased vulnerability to psychiatric disorders

    Impact of Brain-Derived Neurotrophic Factor Val66Met Polymorphism on Cortical Thickness and Voxel-Based Morphometry in Healthy Chinese Young Adults

    Get PDF
    BACKGROUND: Following voxel-based morphometry (VBM), brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265) has been shown to affect human brain morphology in Caucasians. However, little is known about the specific role of the Met/Met genotype on brain structure. Moreover, the relationship between BDNF Val66Met polymorphism and Chinese brain morphology has not been studied. METHODOLOGY/PRINCIPAL FINDINGS: The present study investigated brain structural differences among three genotypes of BDNF (rs6265) for the first time in healthy young Chinese adults via cortical thickness analysis and VBM. Brain differences in Met carriers using another grouping method (combining Val/Met and Met/Met genotypes into a group of Met carriers as in most previous studies) were also investigated using VBM. Dual-approach analysis revealed less gray matter (GM) in the frontal, temporal, cingulate and insular cortices in the Met/Met group compared with the Val/Val group (corrected, P<0.05). Areas with less GM in the Val/Met group were included in the Met/Met group. VBM differences in Met carriers were only found in the middle cingulate cortex. CONCLUSIONS/SIGNIFICANCE: The current results indicated a unique pattern of brain morphologic differences caused by BDNF (rs6265) in young Chinese adults, in which the Met/Met genotype markedly affected the frontal, temporal, cingulate, and insular regions. The grouping method with Met carriers was not suitable to detect the genetic effect of BDNF Val66Met polymorphism on brain morphology, at least in the Chinese population, because it may hide some specific roles of Met/Met and Val/Met genotypes on brain structure

    Prioritization and Evaluation of Depression Candidate Genes by Combining Multidimensional Data Resources

    Get PDF
    Large scale and individual genetic studies have suggested numerous susceptible genes for depression in the past decade without conclusive results. There is a strong need to review and integrate multi-dimensional data for follow up validation. The present study aimed to apply prioritization procedures to build-up an evidence-based candidate genes dataset for depression.Depression candidate genes were collected in human and animal studies across various data resources. Each gene was scored according to its magnitude of evidence related to depression and was multiplied by a source-specific weight to form a combined score measure. All genes were evaluated through a prioritization system to obtain an optimal weight matrix to rank their relative importance with depression using the combined scores. The resulting candidate gene list for depression (DEPgenes) was further evaluated by a genome-wide association (GWA) dataset and microarray gene expression in human tissues.A total of 5,055 candidate genes (4,850 genes from human and 387 genes from animal studies with 182 being overlapped) were included from seven data sources. Through the prioritization procedures, we identified 169 DEPgenes, which exhibited high chance to be associated with depression in GWA dataset (Wilcoxon rank-sum test, p = 0.00005). Additionally, the DEPgenes had a higher percentage to express in human brain or nerve related tissues than non-DEPgenes, supporting the neurotransmitter and neuroplasticity theories in depression.With comprehensive data collection and curation and an application of integrative approach, we successfully generated DEPgenes through an effective gene prioritization system. The prioritized DEPgenes are promising for future biological experiments or replication efforts to discover the underlying molecular mechanisms for depression

    Quantitative EEG findings in patients with acute, brief depression combined with other fluctuating psychiatric symptoms: a controlled study from an acute psychiatric department

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with brief depressive episodes and concurrent rapidly fluctuating psychiatric symptoms do not fit current diagnostic criteria and they can be difficult to diagnose and treat in an acute psychiatric setting. We wanted to study whether these patients had signs of more epileptic or organic brain dysfunction than patients with depression without additional symptomatology.</p> <p>Methods</p> <p>Sixteen acutely admitted patients diagnosed with a brief depressive episode as well as another concurrent psychiatric diagnosis were included. Sixteen patients with major depression served as controls. Three electroencephalographic studies (EEG) were visually interpreted and the background activity was also analysed with quantitative electroencephalography (QEEG).</p> <p>Results</p> <p>The group with brief depression and concurrent symptoms had multiple abnormal features in their standard EEG compared to patients with major depression, but they did not show significantly more epileptiform activity. They also had significantly higher temporal QEEG delta amplitude and interhemispheric temporal delta asymmetry.</p> <p>Conclusion</p> <p>Organic brain dysfunction may be involved in the pathogenesis of patients with brief depressive episodes mixed with rapidly fluctuating psychiatric symptoms. This subgroup of depressed patients should be investigated further in order to clarify the pathophysiology and to establish the optimal evaluation scheme and treatment in an acute psychiatric setting.</p

    Altered Gene Synchrony Suggests a Combined Hormone-Mediated Dysregulated State in Major Depression

    Get PDF
    Coordinated gene transcript levels across tissues (denoted “gene synchrony”) reflect converging influences of genetic, biochemical and environmental factors; hence they are informative of the biological state of an individual. So could brain gene synchrony also integrate the multiple factors engaged in neuropsychiatric disorders and reveal underlying pathologies? Using bootstrapped Pearson correlation for transcript levels for the same genes across distinct brain areas, we report robust gene transcript synchrony between the amygdala and cingulate cortex in the human postmortem brain of normal control subjects (n = 14; Control/Permutated data, p<0.000001). Coordinated expression was confirmed across distinct prefrontal cortex areas in a separate cohort (n = 19 subjects) and affected different gene sets, potentially reflecting regional network- and function-dependent transcriptional programs. Genewise regional transcript coordination was independent of age-related changes and array technical parameters. Robust shifts in amygdala-cingulate gene synchrony were observed in subjects with major depressive disorder (MDD, denoted here “depression”) (n = 14; MDD/Permutated data, p<0.000001), significantly affecting between 100 and 250 individual genes (10–30% false discovery rate). Biological networks and signal transduction pathways corresponding to the identified gene set suggested putative dysregulated functions for several hormone-type factors previously implicated in depression (insulin, interleukin-1, thyroid hormone, estradiol and glucocorticoids; p<0.01 for association with depression-related networks). In summary, we showed that coordinated gene expression across brain areas may represent a novel molecular probe for brain structure/function that is sensitive to disease condition, suggesting the presence of a distinct and integrated hormone-mediated corticolimbic homeostatic, although maladaptive and pathological, state in major depression

    5-HTTLPR Polymorphism Impacts Task-Evoked and Resting-State Activities of the Amygdala in Han Chinese

    Get PDF
    Background: Prior research has shown that the amygdala of carriers of the short allele (s) of the serotonin transporter (5-HTT) gene (5-HTTLPR) have a larger response to negative emotional stimuli and higher spontaneous activity during the resting state than non-carriers. However, recent studies have suggested that the effects of 5-HTTLPR may be specific to different ethnic groups. Few studies have been conducted to address this issue. Methodology/Principal Findings: Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) was conducted on thirty-eight healthy Han Chinese subjects (l/l group, n = 19; s/s group, n = 19) during the resting state and during an emotional processing task. Compared with the s/s group, the l/l group showed significantly increased regional homogeneity or local synchronization in the right amygdala during the resting state (|t|.2.028, p,0.05, corrected), but no significant difference was found in the bilateral amygdala in response to negative stimuli in the emotional processing task. Conclusions/Significance: 5-HTTLPR can alter the spontaneous activity of the amygdala in Han Chinese. However, the effect of 5-HTTLPR on the amygdala both in task state and resting state in Asian population was no similar with Caucasians. The

    Financial difficulties but not other types of recent negative life events show strong interactions with 5-HTTLPR genotype in the development of depressive symptoms

    Get PDF
    Several studies indicate that 5-HTTLPR mediates the effect of childhood adversity in the development of depression, while results are contradictory for recent negative life events. For childhood adversity the interaction with genotype is strongest for sexual abuse, but not for other types of childhood maltreatment; however, possible interactions with specific recent life events have not been investigated separately. The aim of our study was to investigate the effect of four distinct types of recent life events in the development of depressive symptoms in a large community sample. Interaction between different types of recent life events measured by the List of Threatening Experiences and the 5-HTTLPR genotype on current depression measured by the depression subscale and additional items of the Brief Symptom Inventory was investigated in 2588 subjects in Manchester and Budapest. Only a nominal interaction was found between life events overall and 5-HTTLPR on depression, which failed to survive correction for multiple testing. However, subcategorising life events into four categories showed a robust interaction between financial difficulties and the 5-HTTLPR genotype, and a weaker interaction in the case of illness/injury. No interaction effect for the other two life event categories was present. We investigated a general non-representative sample in a cross-sectional approach. Depressive symptoms and life event evaluations were self-reported. The 5-HTTLPR polymorphism showed a differential interaction pattern with different types of recent life events, with the strongest interaction effects of financial difficulties on depressive symptoms. This specificity of interaction with only particular types of life events may help to explain previous contradictory findings

    Serotonin transporter gene polymorphisms and brain function during emotional distraction from cognitive processing in posttraumatic stress disorder

    Get PDF
    BACKGROUND: Serotonergic system dysfunction has been implicated in posttraumatic stress disorder (PTSD). Genetic polymorphisms associated with serotonin signaling may predict differences in brain circuitry involved in emotion processing and deficits associated with PTSD. In healthy individuals, common functional polymorphisms in the serotonin transporter gene (SLC6A4) have been shown to modulate amygdala and prefrontal cortex (PFC) activity in response to salient emotional stimuli. Similar patterns of differential neural responses to emotional stimuli have been demonstrated in PTSD but genetic factors influencing these activations have yet to be examined. METHODS: We investigated whether SLC6A4 promoter polymorphisms (5-HTTLPR, rs25531) and several downstream single nucleotide polymorphisms (SNPs) modulated activity of brain regions involved in the cognitive control of emotion in post-9/11 veterans with PTSD. We used functional MRI to examine neural activity in a PTSD group (n = 22) and a trauma-exposed control group (n = 20) in response to trauma-related images presented as task-irrelevant distractors during the active maintenance period of a delayed-response working memory task. Regions of interest were derived by contrasting activation for the most distracting and least distracting conditions across participants. RESULTS: In patients with PTSD, when compared to trauma-exposed controls, rs16965628 (associated with serotonin transporter gene expression) modulated task-related ventrolateral PFC activation and 5-HTTLPR tended to modulate left amygdala activation. Subsequent to combat-related trauma, these SLC6A4 polymorphisms may bias serotonin signaling and the neural circuitry mediating cognitive control of emotion in patients with PTSD. CONCLUSIONS: The SLC6A4 SNP rs16965628 and 5-HTTLPR are associated with a bias in neural responses to traumatic reminders and cognitive control of emotions in patients with PTSD. Functional MRI may help identify intermediate phenotypes and dimensions of PTSD that clarify the functional link between genes and disease phenotype, and also highlight features of PTSD that show more proximal influence of susceptibility genes compared to current clinical categorizations
    corecore